

1 Female Moths Incorporate Plant Acoustic Emissions 2 into Their Oviposition Decision-Making Process

3 Rya Seltzer¹§, Guy Zer Eshel¹§, Omer Yinon¹, Ahmed Afani¹, Ofri Eitan¹, Sabina
4 Matveev², Galina Levedev², Michael Davidovitz², Tal Ben Tov³, Gayl Sharabi³, Yuval
5 Shapira³, Neta Shvil⁴, Maya Harari Gibli¹, Ireen Atallah¹, Sahar Hadad¹, Dana Ment²,
6 Lilach Hadany^{3,4}†, and Yossi Yovel^{1,4}†

7 § Equal contribution

8 †Equal contribution

9 ¹School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 6997801,
10 Israel.

11 ²Plant Protection Institute, Agricultural Research Organization -Volcani Institute, Derech Maccabim 68,
12 Rishon LeZion, Israel

13 ³School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv
14 University, Ramat Aviv, 6997801, Israel.

15 ⁴Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, 6997801, Israel

17 **Abstract**

18 Insects rely on plants' visual, chemical, tactile, and electrical cues when making various
19 decisions. A recent study demonstrated that dehydrated plants emit ultrasonic sounds
20 within the auditory sensitivity range of many moth species. In this study, we sought to
21 determine whether insects also rely on plant acoustic signals when making decisions.
22 We investigated whether female moths rely on ultrasonic clicks which are typically
23 produced by dehydrated plants when deciding where to oviposit. In the absence of an
24 actual plant, the moths indeed preferred to lay their eggs in proximity to acoustic signals
25 which represent dehydrating plants. Tracking the moths' behavior prior to the decision
26 showed that they examined both sides of the arena and gradually spent more time on
27 the acoustic-playback side. Interestingly, when actual plants were added to the arena,
28 the oviposition preference was reversed and the moths preferred silent plants, which is
29 in accordance with their a-priori preference for hydrated plants. Deafening the moths
30 eliminated their preference, confirming that the choice was based on hearing.
31 Moreover, the presence of male moths including their auditory signals did not affect
32 their oviposition decision, suggesting that the response was specific to plant sound
33 emissions. We reveal evidence for a first acoustic interaction between moths and plants,
34 but as plants emit various sounds, our findings hint to the existence of more currently
35 unknown insect-plant acoustic interactions.

36 **Keywords**

37 plant-insect interactions, ultrasound-hearing moths, plant ultrasonic clicks

38 **Introduction**

39 Plant-insect communication has been shown to rely on various modalities, including
40 vision, olfaction, and mechanoreception (Boppré 1978; Kevan and Lane 1985; Gori
41 1989; Ne’eman 1995; Schiestl 2010; Brito *et al.* 2015; van Dam and Bouwmeester
42 2016). Plant-insect (airborne) acoustic communication, however, has never been
43 demonstrated. It has long been known that plants vibrate at ultrasonic frequencies due
44 to physiological processes such as cavitation, resulting from changes in their water
45 pressure (Milburn and Johnson 1966; Tyree and Dixon 1983; Ponomarenko *et al.*
46 2014). Recently it has also been shown that these ultrasonic sounds produced by a
47 drought-stressed or cut plant are airborne and are probably loud enough to be detected
48 by ultrasound-hearing moths from a distance of a few meters (Khait *et al.* 2023).
49 Moreover, it was shown that these sounds can serve as reliable cues for the condition
50 of the plant, specifically indicating whether a plant is drought-stressed.

51 Ultrasonic hearing abilities and hearing organs located on different body parts have
52 evolved multiple times independently in several Lepidoptera families. Hearing
53 sensitivity typically falls within the 20 kHz -60 kHz range in all groups of moths that
54 have evolved ultrasonic hearing (Fenton and Fullard 1979; Hoy 1996; Conner 1999;
55 Robert and Göpfert 2002; Moir *et al.* 2013; Göpfert and Hennig 2016). Two main
56 hypotheses exist regarding the evolution of these hearing organs. The first suggests that
57 they have evolved for sexual communication, i.e., to detect ultrasonic signals produced
58 by male moths (Nakano *et al.* 2009). The second hypothesis suggests that they have
59 evolved as an anti-predator mechanism to detect echolocation calls produced by bats
60 (Conner 1999; Greenfield and Weber 2000; Nakano *et al.* 2014; but see Kawahara *et*
61 *al.* 2019). Regardless of why it has evolved, ultrasonic hearing allows moths to detect
62 various additional sounds (Spangler 1988), including plant dehydration sound clicks
63 which have a wide spectrum that overlaps with moths’ hearing range and peaks around
64 50kHz (Khait *et al.* 2023). We thus hypothesized that herbivore female moths with
65 ultrasonic hearing might exploit ultrasonic plant emissions as cues to infer plant
66 condition and employ this information for oviposition.

67 The selection of an oviposition site has a significant impact on the fitness of the
68 hatching herbivore larvae and is thus one of the most critical decisions in the life of a
69 female moth (Lhomme *et al.* 2018). In this study, we examined the Egyptian cotton
70 leafworm (*Spodoptera littoralis*; Noctuidae)—a polyphagous herbivore and one of the
71 most significant pests of tomato plants (Prasad and Bhattacharya 1975), which

72 possesses tympanic ears tuned to ultrasonic frequencies (Tougaard 1996, Skals *et al.*
73 2005, Anto *et al.* 2011). The ears' sensitivity of many moths from the Noctuidae family
74 have been fully characterized and they typically show a wide range of sensitivity between
75 ~20 - ~60 kHz (Fullard 1998). The full audiogram of the Egyptian cotton leafworm
76 moth has not been documented, but (in accordance with the moths in the Noctuidae
77 family) its hearing has been shown to be most sensitive around 38 kHz, a frequency
78 which is part of the plant's click spectrum (Tougaard 1998). Moreover, the spectra of
79 the clicks of the males of this species (Fig.1), which are clearly heard by the females
80 broadly overlap with plant clicks. We further demonstrated that the moth can hear
81 echolocation calls which are in the range between 40-80kHz, thus demonstrating
82 sensitivity in the plant clicking range (see Methods).

83 Much research has been conducted to characterize the females' oviposition choice in
84 this species with many factors suggested to be important for their decision-making
85 process. The females have been found to prefer certain species of host plants over others
86 (Salama *et al.* 1971; Sadek *et al.* 2010), to select plants based on their larval experience
87 (Proffit *et al.* 2015), and to choose plants devoid of parasitic larvae, possibly because
88 the presence of such larvae could promote the recruitment of natural enemies (Sadek *et*
89 *al.* 2010). Studies have also investigated female preferences in response to plant stress
90 signals, particularly olfactory cues. However, there is no clear consensus on the
91 direction of these preferences (e.g., Chen *et al.* (2008) and Showler & Moran (2003)).
92 Nonetheless, it is widely accepted that females are capable of recognizing and
93 responding to these signals.

94 In this study, we investigated whether ultrasonic sounds typical of drought-stressed
95 plants influence oviposition decision making in the Egyptian cotton leafworm moths.
96 Based on their general behavioral preference for non-dry plants (as we validated, see
97 below), we hypothesized that the female moths would be affected by plant ultrasonic
98 signals when making oviposition decisions. Our results support this hypothesis,
99 providing the first evidence for the use of typical plant sounds by insects.

100

101 **Results**

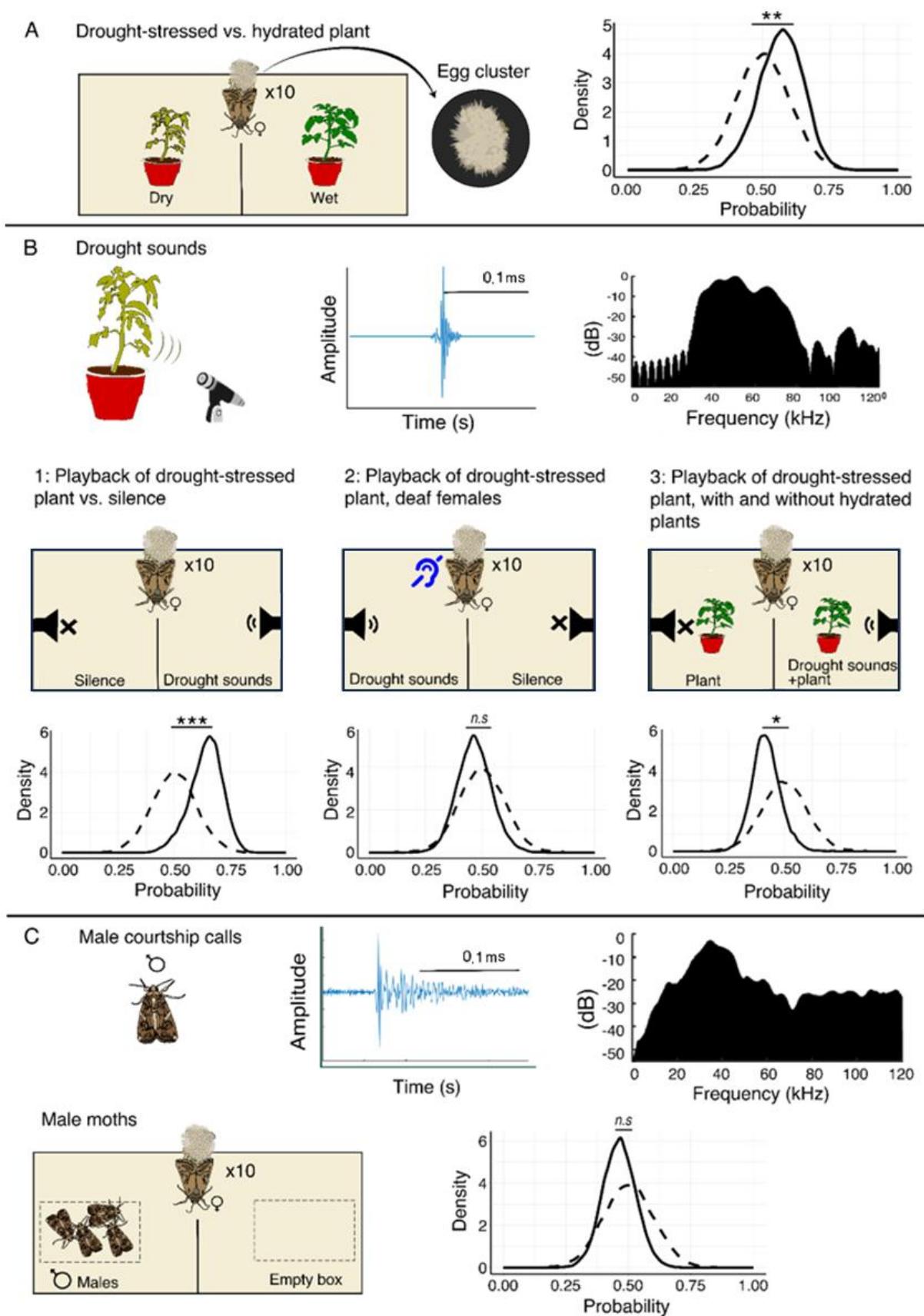
102 In each of the following experiments, we placed 10.9 ± 0.17 (Mean \pm SE) fertile female
103 *S. littoralis* moths in the center of a $100 \times 50 \times 50$ cm 3 arena divided in the middle, with
104 two choices offered, one on either side of the arena (a two-alternative forced choice

105 paradigm, see Methods). To assess their choice, we compared the number of egg
106 clusters which the moths had laid on each side.

107 Each treatment was repeated at least 9 times (i.e., with a new set of moths) but the
108 moths in each repetition were observed for several consecutive nights so that the
109 minimum number of egg-laying events per treatment was 17. Each night was
110 considered an independent observation because the moth could make a new decision
111 regarding where to lay her eggs (to account for this repetition, the nights were nested
112 in the statistical model). The treatment and the control sides were alternated between
113 repetitions. To ensure replicability, the main plant-acoustic treatments were run twice
114 with a pause of several months in between (see Table 1 in the Methods). In these
115 experiments, we used the number of egg clusters, rather than the total number of eggs,
116 as the response variable because each cluster represents a distinct oviposition decision.
117 However, we describe a third experiment below where we evaluated the effect of the
118 plant sounds on egg number (and not cluster number).

119 First, to examine whether *S. littoralis* females prefer to lay their eggs on drying or fresh
120 tomato plants (without any playback sound, see Exp. 1 in the Methods), we placed them
121 in an arena with one drying and one fresh plant. Female *S. littoralis* demonstrated a
122 strong preference to lay their eggs on fresh plants that were not drought-stressed (Fig.
123 1A, 2.2 ± 2.7 vs. 0.9 ± 1.1 egg clusters; Mean \pm SE; clusters per night respectively, p
124 =0.004, Mixed effect generalized linear models – GLMM with the number of egg
125 clusters as the explained parameter, the treatment as a fixed effect and the number of
126 the arena and the repetition round and night as random effects, see statistics).

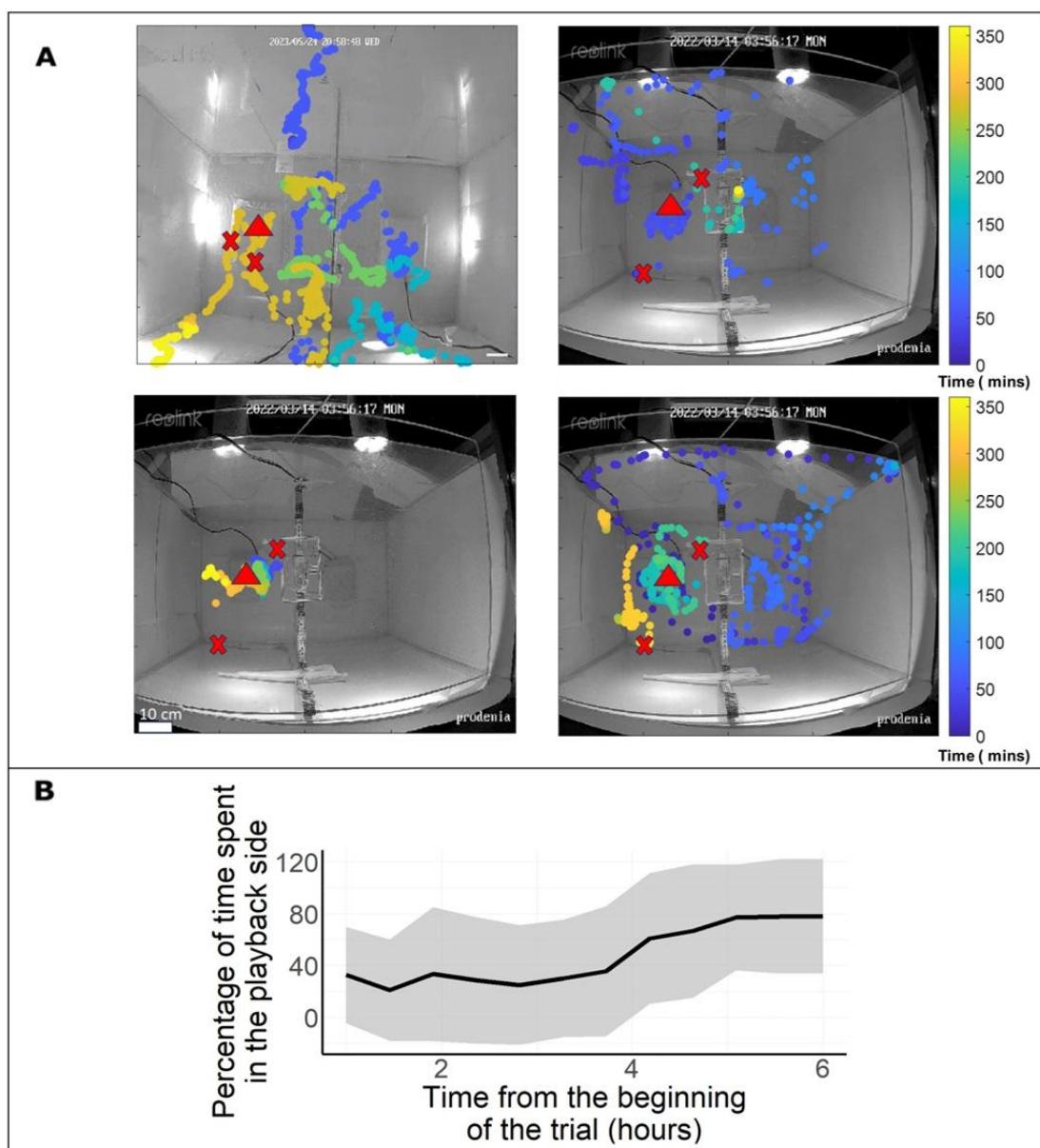
127 We next examined whether an ultrasonic acoustic stimulus affects moths' oviposition
128 decision making. To this end, we played drought-stressed sounds (recorded from a real
129 drying tomato plant) on one side of the arena and either placed nothing on the other
130 side or placed a decoy silent resistor to control for electric field sensing (see Exp. 2 in
131 the Methods). Because we aimed to examine the effect of sound only (without other
132 sensory cues such as visual or olfactory), in this condition, there was no plant in the
133 arena, and we placed a small mesh box wrapped with a paper towel in the center of each
134 side to encourage oviposition (the speaker was under the mesh so that the moth could
135 not sense the vibration directly, only through airborne sounds waves). Female moths
136 significantly preferred to lay their eggs on the side of the arena in which drying plant


137 sounds were played (contradicting the initial observation that they prefer hydrated
138 plants Fig. 1A).

139 Notably, this experiment was repeated twice - six months apart - and the preference was
140 significant both times (Fig.1B1 1.1 ± 0.8 vs 0.4 ± 0.7 egg clusters per night for the
141 playback and the silent side respectively, Mean \pm SE $p=0.0004$, estimate=1, GLMM as
142 above, see Table 1 for the results of each session). The average number of egg clusters
143 (1.1 clusters per-night) in this condition was lower than in the baseline condition with
144 a plant (2.2 clusters), but this is reasonable when taking into account that there was no
145 plant in the arena. The playback rate was high with 60 drought clicks played per minute.
146 This is higher than the rate reported for a single young plant, but it is feasible when
147 considering a patch of adult plants as we have demonstrated experimentally (see
148 Methods). Moreover, we repeated this experiment in an improved experimental setup
149 with a lower playback rate of 30 per minute and got the same result – see below.

150 To make sure that the acoustic signals were the sole influential factor in the moths'
151 decision-making process, we deafened mated female moths (by puncturing the
152 tympanic membrane located at the thoraco-abdominal juncture using an entomological
153 needle #2, see Methods section) and repeated the experiment (drought-stressed sounds-
154 no plant in the arena). We placed 9.3 ± 1.8 female moths in an arena and monitored their
155 choice of oviposition sites. In accordance with the acoustic hypothesis, the deafened
156 moths did not show any preference in egg laying (Fig.1B2, 0.70 ± 0.70 vs. 1.0 ± 1.09
157 egg clusters per night, $p = 0.55$, estimate = 0.12, GLMM).

158 To examine the importance of sound in oviposition decision making under pseudo
159 natural conditions, we placed two hydrated tomato plants - one on either side of the
160 arena - and added a speaker playing back drought emissions sounds on one side and on
161 the other side either a resistor (with the same impedance as the speaker) to control for
162 potential effects of the electric field, or nothing. Interestingly, females showed a
163 significant preference for the silent plant. In this case, the female preference was similar
164 to the initial experiment (without playback) in which the females preferred hydrated
165 plants. The females laid 1.8 ± 1.6 vs. 1.1 ± 1.0 egg clusters per night on the silent and
166 playback sides, respectively. This treatment was also repeated twice over a 12-month
167 period (Fig. 1B3, estimate = -0.52, $p=0.01$, GLMM as above, see Table 1 for the results
168 of each repetition, note that the second repeat was only marginally significant).


169 To assess whether the moths' response was specific to plant sounds, we conducted an
170 additional test using male moths that were placed on one side of the arena (in a mesh-
171 box so females could not interact with). The male moths produced courtship clicks with
172 a similar spectral range like tomato clicks (as we validated, Methods). Females showed
173 no significant preference to lay their eggs near male moths (see Supplementary Fig. 1,
174 Fig. 1C, $p = 0.4$, estimate = -0.25, GLMM as above).

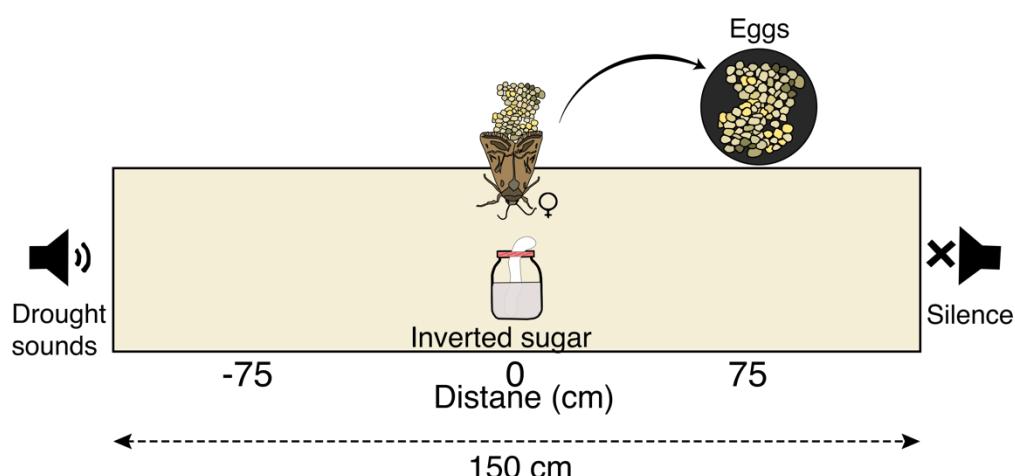
176 **Fig.1: The setup and results.** In all panels A-D, the sound played in the setup is presented in the left
177 section (treatment). Because the number of egg clusters were low (between 0-5 clusters) we find that
178 presenting the Bayesian posterior (see Methods) for the probability to lay a cluster is more informative
179 (We present the raw data on Supplementary Figure 2). The posterior distribution is depicted by solid
180 lines. The prior distribution (with a mean of 0.5 and an STD of 0.1) is represented by dashed lines. To
181 create these plots, eggs laid on the tested side (where the speaker was active, or hydrated plant in the
182 initial experiment) are denoted as 1, while those on the opposite side are marked as 0. These plots thus
183 demonstrate the probability of obtaining a 1 or 0 in each experiment. The middle section shows the two-
184 choice oviposition setup, and the right side shows the results for the following conditions: A) Drought-
185 stressed vs. thriving plant (no playback). B1) Silence vs. drought-stressed plant playback (without a
186 plant). B2) Deaf females in a setup with silence vs. drought-stressed plant playback (without a plant).
187 B3) Silent plant vs. playback of drought-stressed plant. C) A box with male moths vs an empty box.
188 Tomato and male clicks are presented (time signal and spectrum) in panels B and C. The horizontal black
189 bar depicts 0.1ms.

190

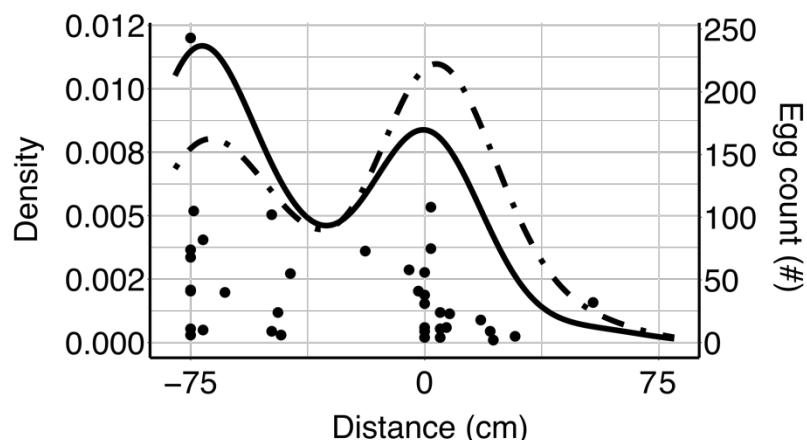
191 To gain further insight into the moths' decision-making process, we repeated
192 experiment 2 (Fig. 1B) where drought-stressed sounds were played on one side of the
193 arena without a plant in three additional repetitions (with a total of N=13 females) while
194 videoing and tracking the entire behavior. In these repetitions, eggs were laid only on
195 the playback side of the arena. The continuous tracking showed that most moths (8 of
196 the 13) visited both sides of the arena, crossing sides 4.2 ± 5.7 times (Mean \pm SD) on
197 average during the night (Fig.3 A). Moreover, over time, there was a significant
198 increase in the female moths' tendency to spend more time in the playback side
199 (Logistic GLMM, $p < 0.004$, Fig.3 B.).

201 **Fig.3: Females' movement and decision making.** A) The continuous location over time in the arena
202 (top-view) of 4 individual moths during one trial of the drought sounds vs. silent treatment. Time is
203 represented by color in minutes, with a red triangle indicating the playback side and red X's marking the
204 locations where eggs were laid. Note that we cannot be sure which of the individuals laid the eggs. B)
205 The proportion of time moths spent in the playback side (in bins of 30 minutes) increased over time.

206
207
208 The sound gradient experiment: To control for a few of the experimental parameters
209 from the setup shown in Fig. 1, we conducted another experiment testing the main effect
210 of plant sounds on oviposition. This experiment replicated the oviposition site
211 preference between the plant stress sound side and the quiet side, but within a different
212 experimental setup (see Sound gradient experiment in the Methods). Namely, in this


213 experiment we tested a single moth each time, with a lower biological-feasible plant
214 click rate (30 click per minute, for experiment regarding natural click rate see Methods)
215 within a long arena – creating a sound gradient. To this end, we placed a single female
216 moth in a 150 cm long arena. On one side of the arena (location -75, Fig. 2A), a speaker
217 played sounds recorded from a drought-stressed tomato plant (at a rate of 30 clicks per
218 minute). On the other side of the arena (location +75, Fig. 2A), there was a silent
219 resistor. A feeder with 60% sugar solution was positioned at the center (location 0, Fig.
220 2A). For each egg cluster, we then measured the distance from the center where it was
221 laid and the number of eggs it contained. The results, for both egg and cluster numbers,
222 revealed a clear bimodal distribution with peaks near the feeder and the speaker but not
223 at the silent edge of the arena. Hence, most clusters were laid very close to the feeder
224 or the speaker while no eggs were laid near the resistor (the closest egg was 21cm away,
225 Fig. 2B, C , both egg and cluster number distributions were significantly different from
226 the expected H0 distribution which was estimated using permutation, K-S test, $p = 2.2$
227 $\times 10^{-16}$ for the clusters, $p = 3.9 \times 10^{-14}$ for the eggs, and see Methods and supplementary
228 Fig. 3). To exclude any potential effect of temporal correlations on egg laying, we have
229 also rerun the statistics when only taking the first night, when the females laid clusters
230 to avoid the desensitization or dependency. This test revealed similar results ($D = 0.55$,
231 $p = 2.2 \times 10^{-16}$). This was thus a third independent validation that females prefer to lay
232 eggs near plant playback and that this behavior is seen both when quantifying the
233 individual egg or the cluster level.

234


235

236

A Playback of drought- stressed plant vs. silence

B

237

238 **Fig.2: Females lay eggs near acoustic playback.** A) The long arena creates an acoustic gradient,
239 allowing us to investigate whether female moths prefer to lay their eggs in specific locations based on
240 the sound environment. Additionally, there is sugar water in the center of the arena, which serves as the
241 adult moth's food. B) Egg count density (solid line) and cluster density (dashed line). Both figures
242 display a bimodal distribution, with one peak near the speaker (-75) and another near the feeder (0).
243 The points under the graph depict laid clusters, illustrating the relationship between the number of eggs
244 per cluster and their spatial distribution within the arena.

245

246 As noted, moths prefer to oviposit near stress sounds in a plant-free system (Fig. 1B1),
247 but their response reverses when stress sounds are played in a system containing plants,
248 leading them to choose oviposition sites near the quiet plant (Fig. 1B3). In this
249 experimental system, we aimed to test whether this reversal reflects a general
250 preference for plants (even when stressed) over no-plant options. We offered moths a
251 dehydrating plant with added clicking sounds on one edge of the arena and plain soil

252 on the other (Supplementary Figure 4). Moths significantly preferred to lay their eggs
253 on the dehydrating clicking plant compared to plain soil (Supplementary Figure 4). This
254 experiment conceptually simulates one step prior to Fig. 1B1 - removing the stressed
255 plant while retaining only acoustic signals - suggesting that clicking sounds might be
256 perceived as indicative of plant presence in the absence of multimodal signals.

257
258

259 **Discussion**

260 We reveal first evidence for the use of acoustic information and specifically of sounds
261 typically emitted by plants in insect decision making. Despite decades of research on
262 plant vibrations, it has only recently been shown that these vibrations can be detected
263 remotely by organisms with ultrasonic hearing ability (Khait *et al.* 2023). Our current
264 results suggest that *Spodoptera littoralis* females detect and respond to ultrasonic clicks
265 which are typically emitted by drought-stressed tomato plants and adjust their choice
266 of oviposition accordingly. This finding opens a whole new range of possibilities for
267 animal-plant acoustic interactions.

268 Moreover, the presence of clicking male moths had no significant effect on the females'
269 oviposition preference, suggesting that female moths can distinguish between different
270 sounds and specifically respond to plant-like sounds. Although the moth's hearing
271 system might be too simple to distinguish among the spectral properties of the different
272 sounds, i.e., male clicks vs. plant sounds (Nakano *et al.* 2013), the temporal patterns of
273 the sequences emitted of these sources are very different. While male moths emit bursts
274 of several clicks (Supplementary. Fig.2), plants emit sporadic clicks with no clear
275 temporal order (as used in our playback). Playback of additional sound signals are
276 needed to examine moth specificity.

277 Although females responded in both treatments when ultrasonic drought-stressed
278 signals were played, they exhibited opposite preferences depending on the presence of
279 a plant. When there was no plant in the arena, the moths showed a strong preference to
280 the playback side, while when plants were present in the arena, the moths switched
281 preference to lay their eggs on the silent side. This latter choice was in accordance with
282 their preference to lay eggs on thriving vs. dry plants while the first choice (without a
283 plant) was somewhat surprising.

284 One explanation for this reversal in preference might be the multi-modal moth decision-
285 making process. When drought-stressed signals alone (without a plant) were presented

286 to the female moths, they might have become the only reliable signals for the presence
287 of a plant in the arena, which can explain their strong preference for this side
288 (Ramaswamy 1988; Sadek 2011; Zhang et al. 2024). In contrast, when we integrated
289 thriving plants into the arena, the moths' decision making became multi-factorial.
290 Namely, on both sides of the arena, there were visual, texture, and olfactory cues of
291 thriving plants, while the treatment side also exhibited an acoustic signal of a stressed
292 plant. In this setup, the females' oviposition preference was reversed to the side without
293 the acoustic signal. This might suggest that the acoustic signal interpretation is content
294 dependent, i.e., that the playback of stress sounds in a multi-factorial setup became a
295 reliable signal of the physiological state of the plant. Therefore, the females reverted
296 back to their original preference to oviposition on thriving plants.

297 To further examine this hypothesis, we conducted an additional experiment using the
298 same protocol described for the “Sound gradient experiment” (see Methods), except
299 that we placed a dehydrated plant (subjected to the stress treatment detailed in
300 Experiment 1) on the side of the speaker that was playing plant-sounds. The resulting
301 oviposition pattern closely mirrored those of our earlier studies: when presented with a
302 stressed plant supposedly emitting dehydration sounds, *S. littoralis* females preferred
303 to deposit their eggs on a dehydrated clicking plant rather than on a no-plant control
304 (Supplementary Figure 4). These findings imply that a stressed, clicking plant is more
305 attractive for oviposition than an empty substrate, suggesting that clicking might be a
306 cue for the presence of a plant.

307 Supporting this hypothesis, in the two choice experiments the probability of laying eggs
308 at all was significantly higher when a plant was present than in the absence of a plant.
309 Specifically, eggs were laid on 68% vs. 54% of the nights with and without plants
310 respectively ($p=0.009$; Binomial test comparing experiments two and three). The
311 number of egg clusters was also higher when a plant was present (see Fig.1). We
312 conclude that the moths were more reluctant to lay their eggs when no plant was
313 present.

314 The preference for the silent plant vs. a plant with stress acoustic playback was not as
315 clear as the preference for the thriving hydrated plants (compare Fig.1B1 and Fig.1B3).
316 There are several potential explanations for this difference. First, moths probably rely
317 on various cues, including olfaction, to detect a drying plant (Ramaswamy 1988; Sadek
318 2011; Zhang et al. 2024)). Although the playback allowed us to isolate the specific
319 effect of the acoustic cue, and we tried to select equal plants, we could not control for

320 other cues provided by the plant, and we may have provided the animal with a partial
321 (and likely even contradictory) set of cues. For instance, the plants might have secreted
322 drought-related volatiles and (although watered) might have occasionally emitted
323 sounds spontaneously, reducing the effect of our playback. Indeed, a physiological
324 measurement of plant volatiles suggested that drying plants can be (at least partially)
325 distinguished by the moths (Fig.S3).

326 We further investigated the behavioral mechanism of the female moths as they explored
327 the arena. We quantified the moths' movement during the decision process in the
328 experimental setup with drought-stressed acoustic signals played on one side, and with
329 an equal-impedance resistor on the other side. Our findings indicated that their decision
330 process typically included crossing over between the two sides of the arena and
331 spending an increasing amount of time on the (drought-stressed) playback side. This
332 suggests that females explore the available space and ultimately decide based on
333 comparing the two.

334 Various plant species emit airborne ultrasonic clicks when they are drought-stressed,
335 which can serve as reliable cues for the physiological condition of the plant (Khait et
336 al. 2023). Our findings demonstrate that moths with auditory abilities use these clicks
337 when choosing a site for oviposition. We hypothesize that some other species of insects
338 might also exploit these acoustic cues to their advantage in different contexts.
339 Pollinating insects, for example, might use drought-related sounds when choosing
340 where to forage. Some insects might even be able to distinguish between clicks
341 produced by different plants or under different conditions, such as drying plants vs.
342 plants under a pathogen attack.

343 Plant clicks are ultrasonic and thus very different from most other outdoors sounds
344 (such as wind sounds, as we also show in Khait et al. 2023). Moreover, because the
345 clicks are ultrasonic and not very intense, they can only be picked up by the moths from
346 a short distance (~1.5m) which allows the moths to localize them in space.

347 The sounds emitted by drought-stressed plants are probably a cue rather than a signal,
348 i.e., they did not evolve to convey information to insects. The interaction that we have
349 demonstrated in this study therefore cannot be considered "communication" according
350 to the conservative definition of the term, which relies on signals that have evolved to
351 convey a specific message (Searcy and Nowicki 2005; Skyrms 2010). However, it is
352 possible that some plants have evolved an ability to amplify their emissions or modify
353 their spectral content to facilitate desirable interactions with animals and perhaps even

354 with other plants (Veits et al. 2019). One exciting possibility would be that plants signal
355 an insect attack by amplifying click intensity to recruit potential predators of the
356 attacking insects, such as predatory insects, rodents, or bats. Such amplification could
357 be achieved by various morphological modifications. Insects, on the other hand, might
358 have evolved behavioral strategies to move near plants and pick up these weak acoustic
359 signals. In conclusion, our study shows that moths are able to detect and respond to
360 acoustic signals emitted by plants. This discovery suggests the existence of a third type
361 of acoustic signal that moths utilize, in addition to those produced by bat echolocation
362 and moth courtship clicks, raising new questions about the evolution of moth hearing.
363 We predict that future studies will uncover more examples of acoustic communication
364 between plants and animals.

365
366 **Methods**

367 Experimental setup –We collected pupae of *Spodoptera littoralis* that were reared under
368 controlled breeding conditions (reared on castor bean leaves, 25 ± 1 °C, 40% relative
369 humidity with a 12–12 h light–dark cycle). Newly-emerged female and male moths
370 were placed together until egg-laying was detected (approximately two days). Then we
371 transferred the females to an experimental arena. Each arena was 100 x 50 x 50 cm³ in
372 size, divided in the middle by a plastic partition half the height of the arena (Fig. 1A).
373 On the partition, we placed a closed test tube with cotton wool containing 60% inverted
374 sugar solution for ad libitum feeding throughout the experiment. Experiment 1 (see
375 below) was performed in a greenhouse (2.5 x 4.5 x 3.5 m³) to simulate optimal
376 conditions for plant development. The experiments involving acoustic signals (see
377 below experiments 2,3,4,5 and 6) were performed in an acoustically shielded room
378 (2.5 x 4 x 2.5 m³) to prevent acoustic interference. Each of the following treatments was
379 performed simultaneously in up to four arenas. Moths could choose between the
380 treatments presented on each side of the arena (see below) and oviposition was
381 monitored daily for three days by counting the number of egg clusters. At the end of
382 each night, we cleaned the arena of counted egg clusters using a cloth with ethanol, so
383 that on the subsequent night, we would not expect there to be evidence of previous
384 oviposition. We repeated the experiments under the same conditions until acquiring at
385 least nine nights with egg-laying observations (eggs were not always laid, which is not
386 surprising given the artificial conditions in the acoustic room used for these
387 experiments). We refer to the cluster and not to the individual egg as the moth's decision

388 unit, because each cluster requires a decision about the location of oviposition, whereas
389 the number of eggs could be affected by the general condition of the female or by
390 external interference. Indeed, there was much variation in the number of eggs per
391 cluster - 68 ± 134 eggs (mean \pm SE). However, to determine whether counting eggs
392 would have altered our results, we conducted an experiment comparing cluster counts
393 to individual egg counts (experiment 6). For experiments with actual plants, a young
394 tomato plant (*Solanum lycopersicum*) in a small pot was used in all experiments. All
395 the treatments are illustrated in Fig.1A-C. The number of repetitions of each treatment
396 is noted in Table 1 and data is presented in supplementary Table 1. To maintain moths'
397 vitality through the experiment we have placed on the starting point (central platform)
398 a closed test tube with cotton wool containing a 60% sugar solution for ad libitum
399 feeding.

400 1. Drought-stressed vs. well-hydrated plants: We placed a single-stem tomato
401 plant, 10 cm high, on either side of the arena. The plant on one side was
402 drought-stressed (three days without watering), and the other was thriving and
403 well-hydrated. Moths could lay eggs on either plant (Fig.1A).

404 2. Playback of a drought-stressed plant vs. silence (without plants): Each side
405 contained an oviposition box ($10 \times 15 \times 5 \text{ cm}^3$ made of $0.5 \times 0.5 \text{ cm}^2$ mesh),
406 covered with a paper towel. A speaker playing sounds recorded from a drought-
407 stressed tomato plant (Khait et al. 2018) was placed under one of the two
408 oviposition boxes (on one side of the arena). The speaker played drought
409 sounds at the same intensity measured for real plants at a rate of 1 click per
410 minute, with a stochastic 10% error in the intervals between clicks (see below
411 for details on assessing intensity and playback rate). The oviposition box on the
412 other side either had a resistor similar to the speaker in shape and identical in
413 impedance to control for potential effects of the electric field created by the
414 speaker (though we did not account for a magnetic field produced by the
415 speaker, which might as well affect the choice), or no resistor (we did not find
416 significant differences between the two silent controls, GLMM, $p=0.58$). The
417 experiment was performed twice to strengthen the confidence in its results: the
418 first trial was performed during August and September 2021 and the second
419 during February to May 2022 (A pool of both trials and controls - with and

420 without resistors - is presented in Fig.1B2). We also repeated this experiment a
421 third time with a lower emission rate of 2 clicks per minute (Table 1).

422 3. Deaf females in a setup with silence vs. drought-stressed plant playback
423 (without a plant): we deafened mated females by puncturing their tympanic
424 membrane and placed them in an arena to assess their response to drought-
425 stressed sounds, compared to a silent control (as described in experiment 2).
426 Deafening surgical procedure: We performed a surgical procedure on female
427 moths to deafen them. The procedure involved puncturing the tympanic
428 membrane located at the thoraco-abdominal juncture using an entomological
429 needle #2. The female moths recovered from the procedure within 2 minutes
430 and were able to fly normally. We tested a sample of these females in a standard
431 rearing box and found that they were able to lay eggs normally. To confirm that
432 the surgery had successfully deafened the females, we conducted an inspection
433 by playing a bat playback (the same as described below). We deafened a group
434 of 20 moths and compared their reactions to a control group of 25 non-deafened
435 moths. During the experiment, the moths were released in a dark acoustically
436 isolated room ($5.5 \times 4.5 \times 2.5$ m³) with acoustic foam on the walls and ceiling
437 and a single light source (12W mercury vapor bulb peaked at 1,650 lux), and
438 while they were in flight around the light source, we emitted the sound. In the
439 control group, 5 moths exhibited a response (such as falling or a significant
440 change in direction), upon hearing the sound (scored by a naïve viewer who did
441 not know whether the moths were treated). In contrast, none of the deafened
442 moths displayed any reaction to the clicking stimulus ($Q=4.5$, $p=0.03$, Chi-
443 square test).

444 4. Well-hydrated plants with and without playback of drought-stressed plant
445 sound: There was an oviposition box on each side of the arena. One side played
446 drought-stressed sounds while the other remained silent, with either a resistor
447 or no sound (same as experiment number 2). Additionally, a thriving, healthy
448 tomato plant was placed on each oviposition box. This experiment was
449 performed twice, 12 months apart, to strengthen the confidence of its results (a
450 pool of both trials and controls [with and without resistors] is presented in
451 Fig.1B3). To determine the specificity of the response to plant sounds, two
452 additional controls were performed:

453 5. Male moths: Five males were enclosed under the oviposition box with sugar
454 water to maintain them. The control box had only sugar water without any
455 moths (Fig.1C). We validated that males in this condition produced clicks by
456 recording the sounds emitted by the five male moths enclosed overnight in an
457 acoustically isolated container which showed that the males frequently click.
458 The test was repeated five times and clicks were always emitted by the males
459 (Supplementary Fig.1).

460 Playback:

461 Drought sounds were recorded using an Hm16 Avisoft microphone and an HM116
462 Avisoft A/D from a distance of 10 cm in an isolated container with walls covered with
463 acoustic foam (Khait et al. 2018). These recordings revealed emission intensities of at
464 least 60 dB SPL (Re 20 μ Pa) at a distance of 10 cm. The sounds were played using a
465 Vifa speaker connected to an Avisoft D/A converter (Player 116).

466 We ensured that playback sound intensity was similar to that measured in real plants
467 on the playback side of the arena (i.e., ~60dB SPL at a distance of 10 cm) and that
468 sound level on the control side was below the detection range of our system, that is,
469 below 30dB SPL at 10 cm. We performed four calibration measurements using a
470 calibrated GRAS 40DP microphone during the period of the experiments to validate
471 that sound levels had not changed over time. Using the GRAS calibrated microphone,
472 we also validated that the average sound intensity of the male moth sequences was the
473 same as that of the playback plant sounds.

474 Validating the playback rate: The drying plant sounds in the box arenas (experiments
475 2-4, Fig.1B) were played back at a rate of 1 click per second (1 Hz) with up to 10%
476 error in the intervals (caused by the computer controlling the system). This frequency
477 is substantially higher than that found for a single young tomato plant (Khait *et al.*
478 2023). However, the rate that we played (60 clicks per minute) is ecologically relevant
479 when considering a patch of tomato (or other) plants. To validate this, we aggregated
480 45 tomato seedlings in a planting tray (30 x 30 cm²) and placed the tray in an empty
481 greenhouse. The plants were not watered for three days, and we recorded sound
482 continuously for 50 hours (using the same Hm116 microphone setup noted above).
483 When placing the microphone ~20cm above the tray – as a flying moth would do, we
484 measured a maximum click rate of 20 clicks per minute (i.e., 0.33 Hz). This is three-

485 fold slower than the rate we used, but very similar to the rate that we used in the gradient
486 experiment (see below). Moreover, when taking into account the moth's detection range
487 for this emission intensity which is likely ~1.5 meters at least (Khait *et al.* 2023), a
488 female moth could be exposed to a rate over three-fold higher (i.e., higher than 1 Hz)
489 in a patch of drying plants (which would contain more than 100 seedlings in a typical
490 bush of agricultural or wild hosts typical of this species). Notably, every plant that we
491 examined was found to emit similar ultrasonic clicks when dehydrating (Khait *et al.*
492 2023), so this behavior could be relevant to other plants many of which grow as dense
493 bushes.

494

495 **Table 1.** Summary of experimental conditions including the number of repetitions, i.e. the
 496 number of times that new moths were placed in the arenas and the number of observations (each
 497 repetition was observed for approximately three consecutive nights). The total number of egg
 498 clusters and the P-values for each experiment are reported. Experiments that were replicated
 499 twice appear in two separate lines denoted for combined statistics and by #1 or #2. Experiments
 500 and observations that did not produce any egg-laying were excluded from the data set and that
 501 is why the number of observations is often the same as the number of repetitions.

Experiment	#Repetitions	#Observations	#Egg clusters	Mean± SE clusters on the side of the treatment	Mean ± SE clusters on the side of the Control	P-Value	Estimates (# of Egg clusters)
Drought-stressed plants vs. well-hydrated plants	17	17	53	0.88±1.11	2.23±2.68	0.01	0.93
Playback of a drought-stressed plant vs silence, combined trials (playback: 60 per minute)	38	45	67	1.08±0.82	0.40±0.65	0.00	1.00
Playback of a drought-stressed plant vs silence 1# (playback: 60 per minute)	11	17	24	1.11±0.69	0.29±0.58	0.01	1.34
Playback of a drought-stressed plant vs silence2# (playback: 60 per minute)	27	28	43	1.07±0.89	0.46±0.69	0.02	0.84
Deafened moths -Playback of a drought-stressed plant vs silence	23	23	39	0.70 ± 0.70	1.00 ± 1.09	0.55	0.12
Well-hydrated plants and playback of a drought-stressed plant, combined trials (playback: 60 per minute)	29	39	110	1.05±0.99	1.76±1.64	0.01	-0.52
Well-hydrated plants and playback of a drought-stressed plant 1# (playback: 60 per minute)	9	19	44	0.78±0.91	1.52±1.38	0.05	-0.66
Well-hydrated plants and playback of a drought-stressed plant 2# (playback: 60 per minute)	20	20	66	1.30±1.03	2.00±1.86	0.10	-0.43
Males vs no-males	19	29	48	0.72±0.92	0.93±1.33	0.39	-0.25

503

504

505 Sound gradient experiment

506 We used elongated arenas ($150 \times 20 \times 5 \text{ cm}^3$, Fig.2A). In the center of the arena
507 (location 0), we placed a closed test tube with cotton wool containing a 60% sugar
508 solution for ad libitum feeding (to maintain moths' vitality). To facilitate accurate
509 measurement of egg distances from the speaker (location -75), we printed a ruler and
510 placed it along the bottom of the arena. Each moth was placed at the center of the arena
511 at the beginning of the experiment. On the next morning, we recorded the locations of
512 the egg clusters and counted the number of eggs in each cluster using a stereoscopic
513 microscope, or a magnifying glass if the eggs were not laid on the ruler. Each female
514 remained in the arena during the days starting three days after emerging from the pupa
515 and mating, and until it died. After each night, we switched the locations of the speaker
516 and the resistor within the arena. We measured a 30 dB SPL difference in intensity
517 between the side of the speaker and the side of the resistor. The clicks were emitted at
518 a frequency of 0.5 clicks per second (30 per minute).

519 Tracking the females' decision-making process

520 In order to investigate how moths survey the experimental arena and subsequently
521 engage in a decision-making process, we conducted two additional trials in which we
522 continuously recorded the movement of the moths throughout the night. In each trial,
523 we placed four female moths on a platform in the middle of the arena, in which a
524 speaker played drought-stressed plant sounds on one side, while on the other, control
525 side we placed a silent resistor (as in treatment 3 above). We exchanged sides between
526 trials and tracked the moths for six hours using an IR camera (Reolink RLC-511-5MP
527 camera) placed above the arena. We then documented the position of each moth at 12
528 seconds intervals using the DLTdv 8 software (Hedrick 2008). Each individual was
529 recognized according to its proximity to the last tracking point in order to reconstruct
530 its full movement. We quantified how many times each individual crossed the center
531 of the arena (the platform in the center was divided in the middle), and the proportion
532 of time it spent in each side.

533 Statistics

534 Mixed effect generalized linear models (GLMM) were used (in MATLAB) to examine
535 the females' choice of oviposition. Random effects were set as intercepts. The number

536 of clusters was set as the explained variable. The treatment, i.e., playback or control,
537 and the number of female moths in the arena, was set as a fixed effect. The number of
538 the arena, the month in which the experiment was performed, the number of repetitions,
539 and the night of the repetition were considered as random effects. Because we were
540 analyzing counts (number of clusters), the model was run using a Poisson distribution.
541 In the experiments in which we ran two repetitions of the same experiment, we added
542 the session as another fixed parameter and we also ran the statistics separately for each
543 session.

544 To deepen our understanding of the trends observed in the experiments, we
545 implemented Bayesian model fittings for each choice-based experiment. In this
546 analysis, "oviposition choices" were considered as distinct decisions. A value of 1 was
547 assigned when the egg cluster was located on the side with the active speaker (or on the
548 hydrated plant in the initial experiment) and a value of 0 was assigned for oviposition
549 on the opposite side. We employed a Gaussian model, incorporating the number of
550 females in each experiment as a random effect, with a prior mean of 0.5 and a standard
551 deviation of 0.1. For each experiment, we sampled our data 16,000 times to calculate
552 the posterior distribution from these samples. We used a Binomial GLMM to determine
553 the effect of the treatment on the moths' decision making. To achieve this, the
554 proportion of time spent in each side of the arena was set as an explained variable, the
555 playing side as a fixed effect, with the trial and the individual moth as random effects.
556 To study the effect of time on the movement of the moths, we used Logistic GLMM in
557 which the accumulated amount of time spent on the sound-playing side was set as an
558 explained variable, the time as a fixed effect, and the trial and the individual moths were
559 set as random effects.

560 To compare the distribution of eggs in the elongated arena to a random distribution, we
561 generated an H0 distribution by randomly shuffling the locations of the speaker and
562 resistor for each laid egg. This distribution was then compared to our actual egg count
563 distribution using the Kolmogorov-Smirnov test (Supplementary Fig. 3).

564

565 **Acknowledgments**

566 We thank Hadas Marcus for linguistic editing, Tal Erez for providing moths, Adi Segal,
567 Einav Balachsan, Michael Martynenko, Shira Fraenkel, Yuval Lustig, and Morad
568 Garam for experimental setup, Nitzan Shahar statistical consulting ,Aya Goldshtain for

569 reviewing the manuscript and statistical consulting, Mor Taub for graphic editing,
570 Yonatan Nathan, and Inon Scharf for reviewing the manuscript.

571 **References**

572 Amichai E, Yovel Y (2017) Bats pre-adapt sensory acquisition according to target
573 distance prior to takeoff even in the presence of closer background objects. *Scientific
574 Reports* 7:.. <https://doi.org/10.1038/s41598-017-00543-8>

575 Amichai E, Yovel Y (2021) Echolocating bats rely on an innate speed-of-sound
576 reference. *Proceedings of the National Academy of Sciences* 118:..
577 <https://doi.org/10.1073/PNAS.2024352118>

578 Anton, S., Evengaard, K., Barrozo, R. B., Anderson, P., & Skals, N. (2011). Brief
579 predator sound exposure elicits behavioral and neuronal long-term sensitization in the
580 olfactory system of an insect. *Proceedings of the National Academy of Sciences of the
581 United States of America*, 108(8), 3401–3405.
582 <https://doi.org/10.1073/pnas.1008840108>

583 Boppré M (1978) Chemical communication, plant relationships, and mimicry in the
584 evolution of danaid butterflies. *Entomologia Experimentalis et Applicata* 24:264–277

585 Brito VLG, Weynans K, Sazima M, Lunau K (2015) Trees as huge flowers and flowers
586 as oversized floral guides: The role of floral color change and retention of old flowers
587 in *Tibouchina pulchra*. *Frontiers in Plant Science* 6:1–10.

588 Chen, Yigen, John R. Ruberson, and Dawn M. Olson. 2008. “Nitrogen Fertilization Rate
589 Affects Feeding, Larval Performance, and Oviposition Preference of the Beet
590 Armyworm, *Spodoptera Exigua*, on Cotton.” *Entomologia Experimentalis et
591 Applicata* 126(3):244–55.

592 Conner WE (1999) “Un chant d’appel amoureux”: Acoustic communication in moths.
593 *Journal of Experimental Biology* 202:1711–1723.
594 <https://doi.org/10.1242/jeb.202.13.1711>

595 Fenton MB, Fullard JH (1979) The influence of moth hearing on bat echolocation
596 strategies. *Journal of Comparative Physiology A* .132:77–86.
597 <https://doi.org/10.1007/BF00617734>

598 Fullard, J. H. (1998). The sensory coevolution of moths and bats. In *Comparative
599 Hearing: Insects* pp. 279-326. New York: Springer-Verlag

600 Göpfert MC, Hennig RM (2016) Hearing in Insects. *Annual Review of Entomology*
601 61:257–276. <https://doi.org/10.1146/annurev-ento-010715-023631>

602 Gori DF (1989) Floral Color Change in *Lupinus argenteus* (Fabaceae): Why Should
603 Plants Advertise the Location of Unrewarding Flowers to Pollinators? *Evolution*
604 43:870

605 Greenfield MD, Weber T (2000) Evolution of ultrasonic signaling in wax moths:
606 Discrimination of ultrasonic mating calls from bat echolocation signals and the
607 exploitation of an antipredator receiver bias by sexual advertisement. *Ethology*
608 *Ecology and Evolution* 12:259–279. <https://doi.org/10.1080/08927014.2000.9522800>

609 Hedrick TL. (2008), Software techniques for two- and three-dimensional kinematic
610 measurements of biological and biomimetic systems, *Bioinspiration & Biomimetics*,
611 3(3):034001

612 Hoy RR (1996) Tympanal Hearing in Insects. *Annual Review of Entomology* 41:433–
613 450. <https://doi.org/10.1146/annurev.ento.41.1.433>

614 Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, DonathA,
615 Gimnich F, Frandsen PB, Zwick A, dos Reis M, Barber JR, Peters RS, Liu S, Zhou X,
616 Mayer C, Podsiadlowski L, Storer C, Yack JE, Misof B, Breinholt JW (2019),
617 Phylogenomics Reveals the Evolutionary Timing and Pattern of Butterflies and
618 Moths, *Proceedings of the National Academy of Sciences of the United States of*
619 *America* 116(45):22657–63. <https://pnas.org/doi/full/10.1073/pnas.1907847116>

620 Kevan P. G., and Lane, M. A., (1985). Flower petal microtexture is a tactile cue for bees.
621 *Proceedings of the National Academy of Sciences*, 82(14), 4750–4752.
622 <https://doi.org/10.1073/pnas.82.14.4750>

623 Khait, I., Lewin-Epstein, O., Sharon, R., Saban, K., Goldstein, R., Anikster, Y., Zeron,
624 Y., Agassy, C., Nizan, S., Sharabi, G., Perelman, R., Boonman, A., Sade, N., Yovel,
625 Y., & Hadany, L. (2023). Sounds emitted by plants under stress are airborne and
626 informative. *Cell*, 186(7), 1328–1336.e10. <https://doi.org/10.1016/j.cell.2023.03.009>

627 Lhomme P, Carrasco D., Larsson M., Hansson B., Anderson P. (2018) A context-
628 dependent induction of natal habitat preference in a generalist herbivorous insect.
629 *Behavioral Ecology*:29:360–367, <https://doi.org/10.1093/beheco/arx173>

630 Milburn JA, Johnson RPC (1966) The conduction of sap. *Planta* 69:43–52

631 Moir HM, Jackson JC, Windmill JFC (2013) Extremely high frequency sensitivity in a
632 “simple” ear. *Biology Letters* 9:.. <https://doi.org/10.1098/rsbl.2013.0241>

633 Nakano R Takanashi T Fujii T Skals N Surlykke A Ishikawa Y. (2009) Moths are not
634 silent, but whisper ultrasonic courtship songs. *Journal of Experimental Biology*.
635 212:4072–4078.

636 Nakano R, Takanashi T, Surlykke A, Skals N, Ishikawa Y. (2013) Evolution of deceptive
637 and true courtship songs in moths. *Scientific Reports*.3:2003. doi: 10.1038/srep02003.

638 Nakano R, Takanashi T, Surlykke A (2014) Moth hearing and sound communication.

639 *Journal of Comparative Physiology A*: 201:111–121

640 Ne’eman G (1995) Pollination Ecology and the Significance of Floral Color Change in

641 *Lupinus Pilosus L. (Fabaceae)*. *Israel Journal of Plant Sciences*.

642 <https://doi.org/10.1080/07929978.1995.10676599>

643 Ponomarenko A., Vincent O., Pietriga A., Cochard H., Badel É. and Marmottant P.

644 (2014) Ultrasonic emissions reveal individual cavitation bubbles in water-stressed

645 wood. *Journal of Royal Society Interface*: 11.

646 Prasad, J., and A. K. Bhattacharya. 1975. “Growth and Development of *Spodoptera*

647 *Littoralis* (Boisd.) (Lepidoptera, Noctuidae) on Several Plants.” *Zeitschrift Für*

648 *Angewandte Entomologie* 79(1–4):34–48.

649 Proffit M, Khallaf MA, Carrasco D, Larsson MC, Anderson P (2015) ‘Do you remember

650 the first time?’ host plant preference in a moth is modulated by experiences during

651 larval feeding and adult mating. *Ecology Letters* 18:365–374

652 Ramaswamy, Sonny B. 1988. “Host Finding by Moths: Sensory Modalities and

653 Behaviours.” *Journal of Insect Physiology* 34(3):235–49. doi: 10.1016/0022-

654 1910(88)90054-6

655 Robert D, Göpfert MC (2002) Novel schemes for hearing and orientation in insects.

656 *Current opinion in neurobiology* 12:715–20

657 Sadek MM, Hansson BS, Anderson P (2010) Does risk of egg parasitism affect choice of

658 oviposition sites by a moth? A field and laboratory study. *Basic and Applied Ecology*

659 11:135–143. <https://doi.org/10.1016/j.baae.2009.09.003>

660 Sadek, Medhat M. 2011. “Complementary Behaviors of Maternal and Offspring

661 *Spodoptera Littoralis*: Oviposition Site Selection and Larval Movement Together

662 Maximize Performance.” *Journal of Insect Behavior* 24(1):67–82. doi:

663 10.1007/s10905-010-9238-4.

664 Salama HS, Dimetry NZ, Salem SA (1971) On the Host Preference and Biology of the

665 Cotton Leaf. *Zeitschrift für Angewandte Entomologie* 67:261–266

666 Schiestl FP (2010) The evolution of floral scent and insect chemical communication.

667 *Ecology Letters* 13:643–656. <https://doi.org/10.1111/j.1461-0248.2010.01451.x>

668 Searcy, W. A. & Nowicki, S. (2005). The Evolution of Animal Communication:

669 Reliability and Deception in Signalling Systems. Princeton University Press,

670 Princeton.

671 Showler, Allan T., and Patrick J. Moran. 2003. "Effects of Drought Stressed Cotton,
672 Gossypium Hirsutum L., on Beet Armyworm, *Spodoptera Exigua* (Hübner)
673 Oviposition, and Larval Feeding Preferences and Growth." *Journal of Chemical*
674 *Ecology* 29(9):1997–2011.

675 Shvil, N., Golan, A., Yovel, Y., Ayali, A., & Maoz M., B. (2023). The Locust antenna as
676 an odor discriminator. *Biosensors and Bioelectronics*, 221.
677 <https://doi.org/10.1016/j.bios.2022.114919>

678 Skals, N., Anderson, P., Kanneworff, M., Löfstedt, C., & Surlykke, A. (2005). Herodours
679 make him deaf: Crossmodal modulation of olfaction and hearing in a male moth.
680 *Journal of Experimental Biology*, 208(4), 595–601. <https://doi.org/10.1242/jeb.01400>

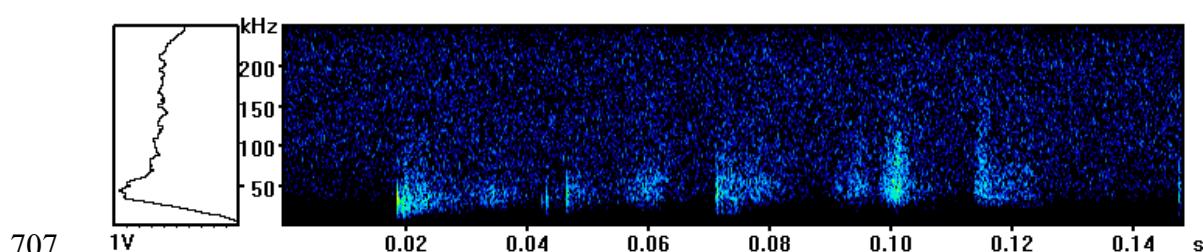
681 Skyrms B. (2010) Signals: Evolution, Learning, and Information. Oxford University
682 Press

683 Spangler HG (1988) Moth hearing, defense, and communication. *Annual Review of*
684 *Entomology* Vol 33 59–81. <https://doi.org/10.1146/annurev.en.33.010188.000423>

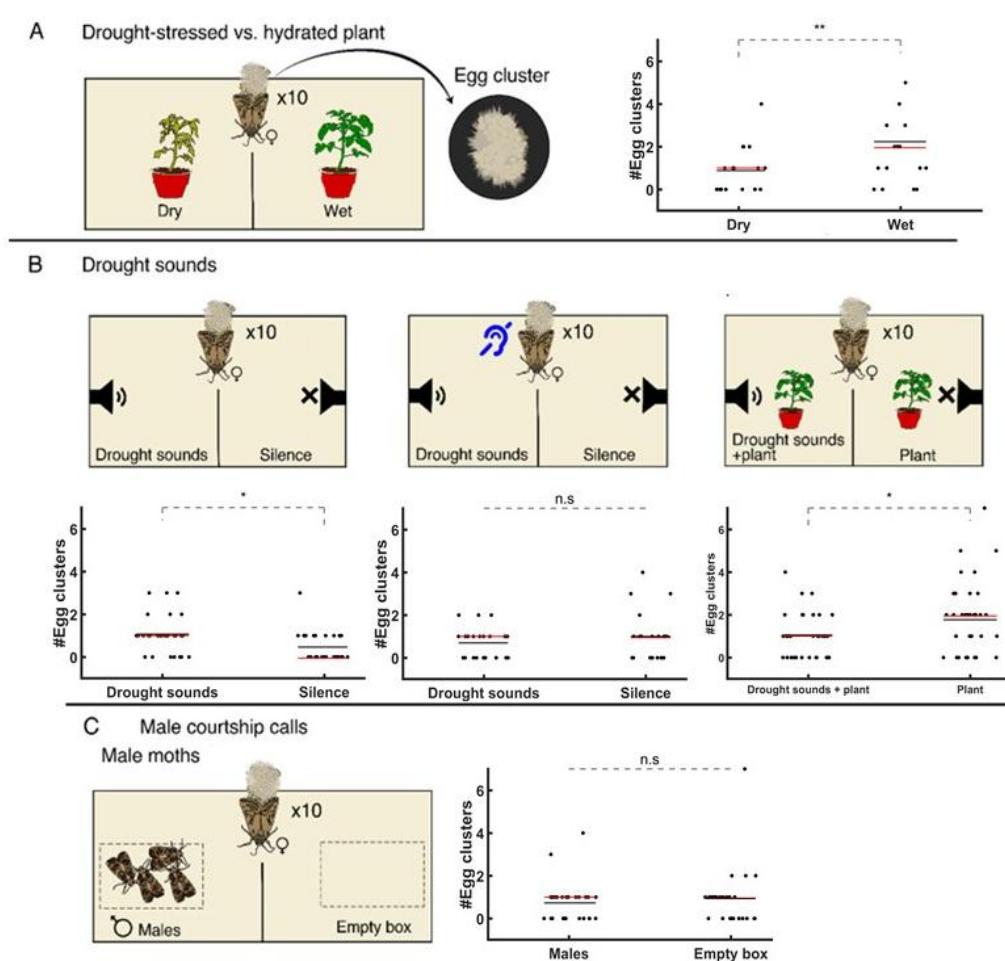
685 Tougaard, J. (1996). Energy detection and temporal integration in the noctuid A1
686 auditory receptor. *Journal of Comparative Physiology A*: 178.

687 Tougaard J. (1998). Detection of short pure-tone stimuli in the noctuid ear: what are
688 temporal integration and integration time all about? *Journal of Comparative*
689 *Physiology A*: 183, 563-572.

690 Tyree MT, Dixon MA (1983) Cavitation Events in *Thuja occidentalis* L.? . *Plant*
691 *Physiology* 72:1094–1099. <https://doi.org/10.1104/pp.72.4.1094>

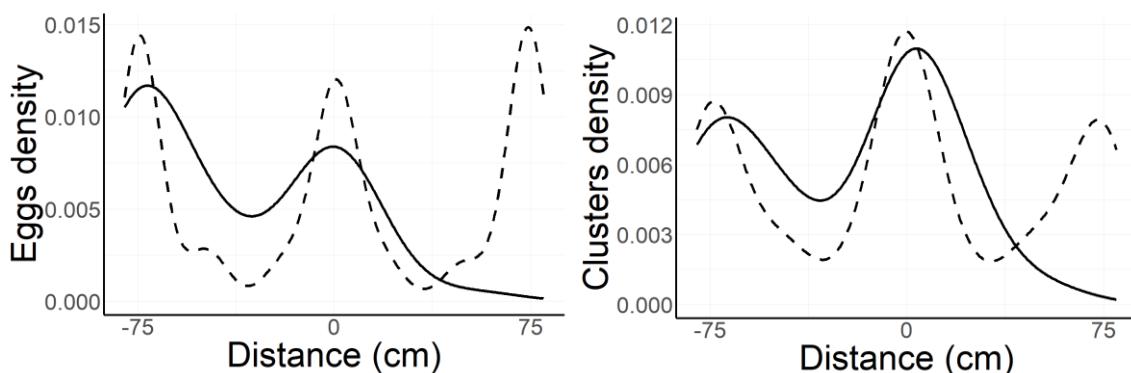

692 van Dam NM, Bouwmeester HJ (2016) Metabolomics in the Rhizosphere: Tapping into
693 Belowground Chemical Communication. *Trends in Plant Science* 21:256–265.
694 <https://doi.org/10.1016/j.tplants.2016.01.008>

695 Veits, M., Khait, I., Obolski, U., Zinger, E., Boonman, A., Goldshtain, A., Saban, K.,
696 Seltzer, R., Ben-Dor, U., Estlein, P., Kabat, A., Peretz, D., Ratzersdorfer, I., Krylov,
697 S., Chamovitz, D., Sapir, Y., Yovel, Y., & Hadany, L. (2019). Flowers respond to
698 pollinator sound within minutes by increasing nectar sugar concentration. *Ecology*
699 *Letters*, 22(9), 1483–1492. <https://doi.org/10.1111/ele.13331>


700 Zhang, Xiaxuan, Yang Liu, Mengbo Guo, Dongdong Sun, Mengjun Zhang, Xi Chu,
701 Bente Gunnveig Berg, and Guirong Wang. 2024. "A Female-Specific Odorant
702 Receptor Mediates Oviposition Deterrence in the Moth *Helicoverpa Armigera*."
703 *Current Biology*: CB 34(1):1-11.e4. doi: 10.1016/j.cub.2023.11.026.
704

706 Supplementary

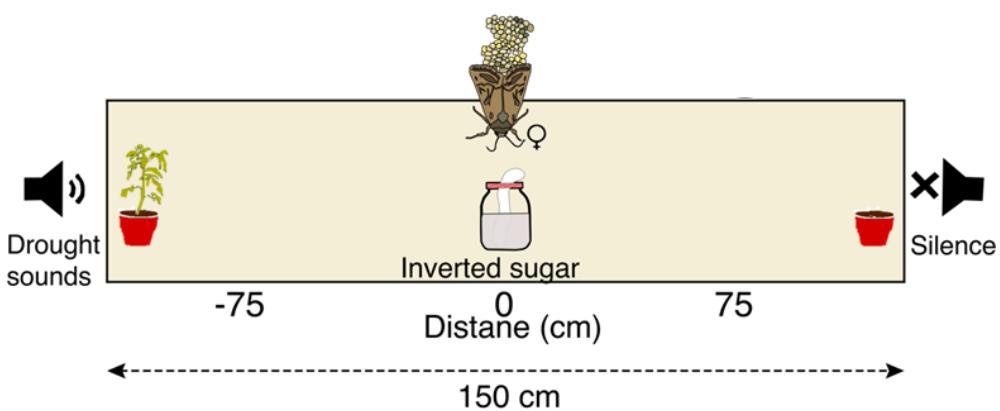
707 1V 0.02 0.04 0.06 0.08 0.10 0.12 0.14 s
 708 **Supplementary Fig 1.** Male Egyptian cotton leaf moths (*S. littoralis*) courtship
 709 sequences recorded when we placed males in the arena (spectrogram presented).

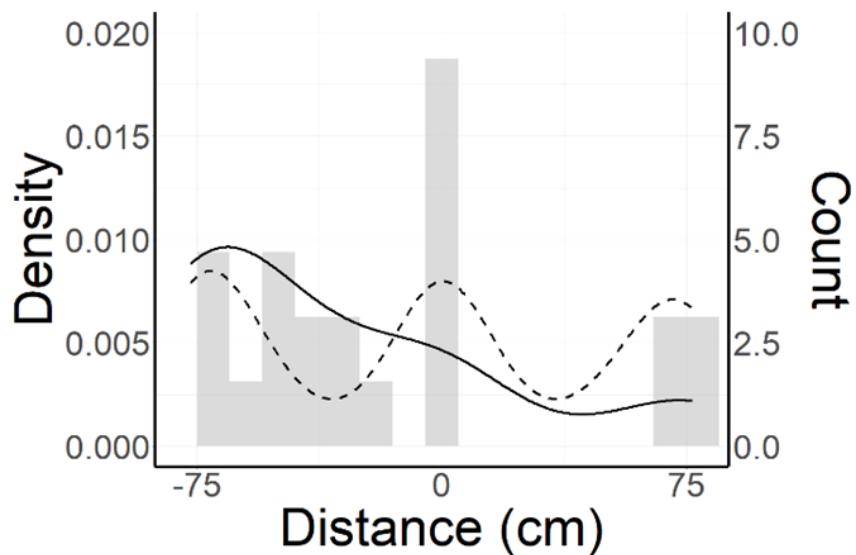

710

712

713 **Supplementary Fig 2.** This figure replicates the experiment shown in Figure 1,
714 displaying the raw measurements without Bayesian analysis. In all panels (A–D), the
715 treatment is shown in the left section. These graphs summarize every datum collected
716 throughout the two choices experiments. Each marker represents a cluster deposited at
717 the choice indicated on the X-axis. The overall mean is overlaid as a solid black line,
718 and the median as a solid red line. A) Drought-stressed vs. thriving plant (no playback).
719 B1) Silence vs. drought-stressed plant playback (without a plant). B2) Deaf females in
720 a setup with silence vs. drought-stressed plant playback (without a plant). B3) Silent
721 plant vs. playback of drought-stressed plant. C) A box with male moths vs an empty
722 box.

723


724

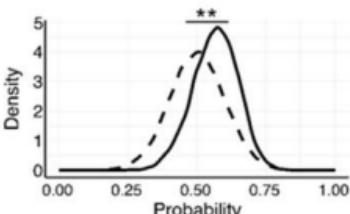
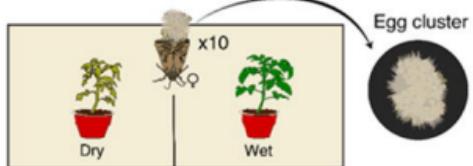

725 **Supplementary Fig 3.** On the left, comparison between the egg count results (solid
726 line) in the elongated arena and the pseudo-random distribution (dashed line) (K-S test,
727 $D = 0.3$, $p = 2.2 \times 10^{-16}$). On The right, comparison between the clusters count results
728 (solid line) pseudo-random distribution (dashed line) (K-S test, $D = 0.21$, $p = 3.9 \times$
729 10^{-14}). The speaker was placed on location -75, a feeder was placed on the center
730 (location 0) and a resistor was placed on location 75. To exclude any potential effect of
731 temporal correlations on egg laying, we have also rerun the statistics when only taking
732 the first night, when the females laid clusters to avoid the desensitization or
733 dependency. This test revealed similar results ($D = 0.55$, p -value $< 2.2 \times 10^{-16}$).

734

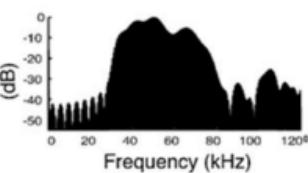
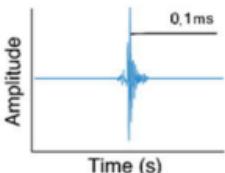
A

B

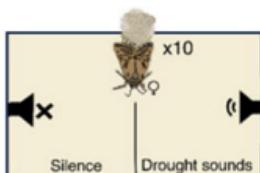
735
736
737

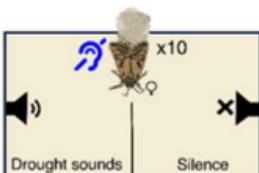


738 **Supplementary Fig 4.**

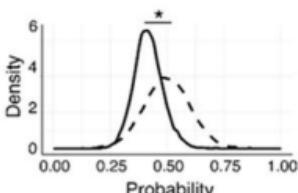
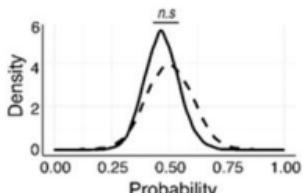
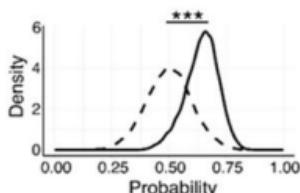
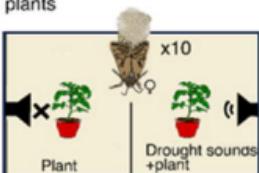
739 (A) We conducted an additional experiment using the same protocol described for the
740 “sound-gradient experiment” (see Methods, Sound gradient experiment), except that
741 we placed a dehydrated, plant (subjected to the stress treatment detailed in Experiment
742 1) on the speaker side, and a resistor plus soil on the control side. (B) The resulting
743 oviposition pattern closely mirrored those of our earlier studies: when presented with a
744 stressed plant versus an empty control, *S. littoralis* females deposited significantly more
745 egg clusters on the dehydrated clicking plant. To test the effect of the treatments on the
746 oviposition we compared the observed cluster locations (solid line) to pseudo-random

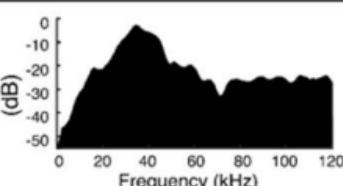
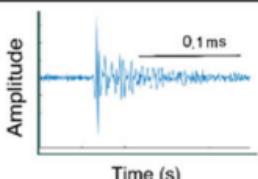


747 distribution (dashed line). We found significant differences between the two
748 distributions (K-S test, $D = 0.29$, $p = 0.001$). The speaker was placed at location -75cm,
749 a feeder was placed on the center (location 0) and a resistor was placed at location
750 75cm. We have also rerun the statistics when only taking the first night when the
751 females laid clusters to avoid the fear of dependency. These tests revealed similar
752 results ($D = 0.34$, $p = 0.020$). Light-gray bars denote the observed measurements
753 aggregated into 10 cm bins (N=20).

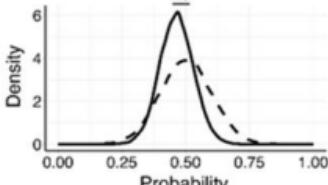
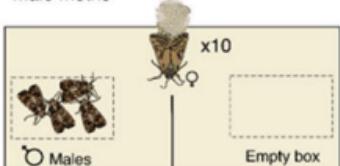
754


A Drought-stressed vs. hydrated plant

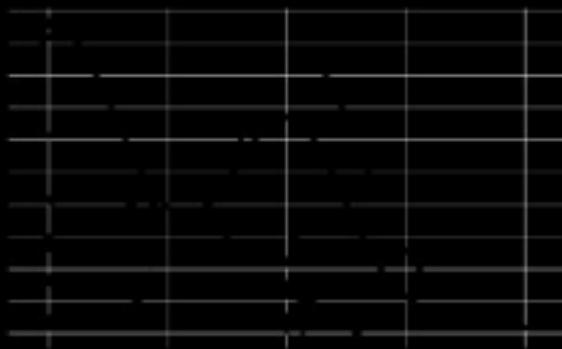

B Drought sounds

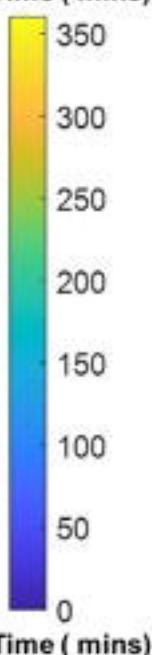
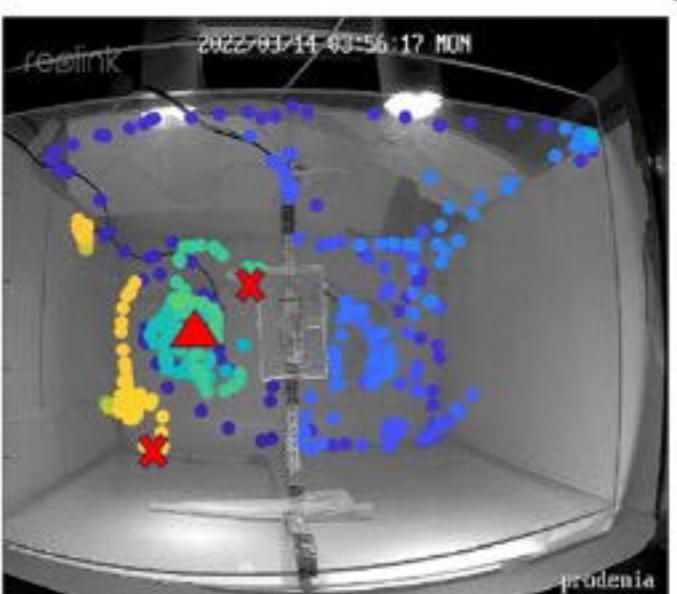
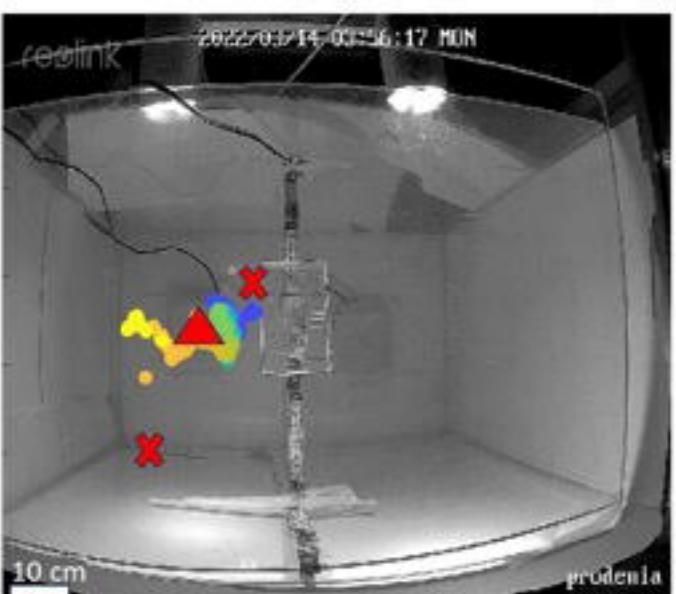
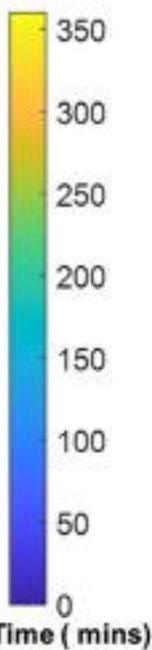
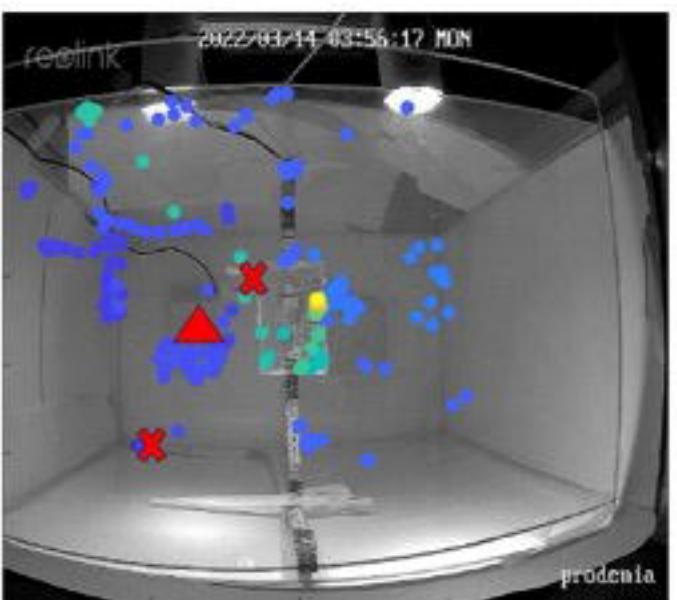
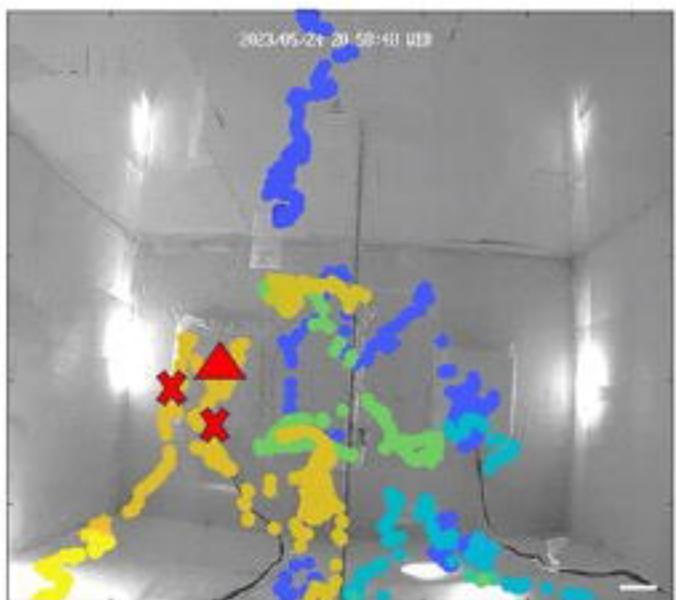
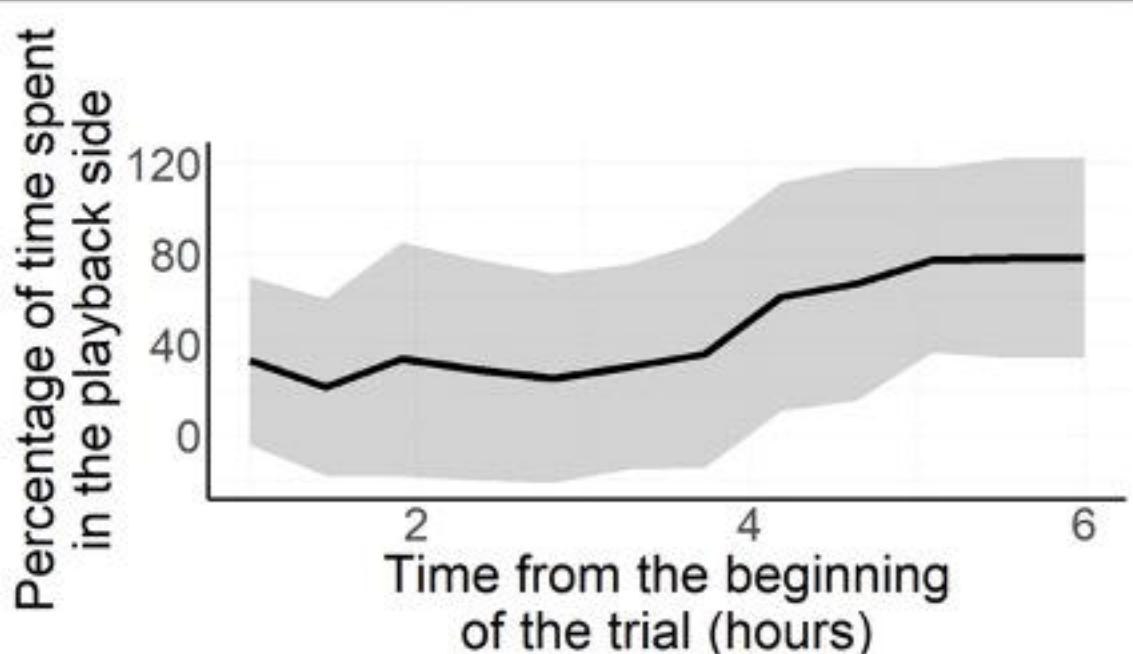




1: Playback of drought-stressed plant vs. silence



2: Playback of drought-stressed plant, deaf females



3: Playback of drought-stressed plant, with and without hydrated plants

C Male courtship calls










Male moths

Inverted sugar

A**B**