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Abstract 13 

Bats face a complex navigation challenge when emerging from densely populated roosts, where 14 

vast numbers take off at once in dark, confined spaces. Each bat must avoid collisions with walls 15 

and conspecifics while locating the exit, all amidst overlapping acoustic signals. This crowded 16 

environment creates the risk of acoustic jamming, in which the calls of neighboring bats interfere 17 

with echo detection, potentially obscuring vital information. Despite these challenges, bats 18 

navigate these conditions with remarkable success. Although bats have access to multiple sensory 19 

cues, here we focused on whether echolocation alone could provide sufficient information for 20 

orientation under such high-interference conditions. To explore whether and how they manage this 21 

challenge, we developed a sensorimotor model that mimics the bats’ echolocation behavior under 22 

high-density conditions. Our model suggests that the problem of acoustic jamming may be less 23 

severe than previously assumed. Frequent calls with short inter-pulse intervals (IPI) increase the 24 

sensory input flow, allowing integration of echoic information across multiple calls. When 25 

combined with simple movement-guidance strategies—such as following walls and avoiding 26 

nearby obstacles—this accumulated information enables effective navigation in dense acoustic 27 

environments. Together, these findings demonstrate a plausible mechanism by which bats may 28 

overcome acoustic interference and underscore the role of signal redundancy in supporting robust 29 

echolocation-based navigation. Beyond advancing our understanding of bat behavior, they also 30 

offer valuable insights for swarm robotics and collective movement in complex environments.  31 
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 32 

Introduction 33 

In many bat species individuals dwell together in caves (or similar roosts), forming large colonies 34 

with tens to several millions of individuals1,2 . Each evening, at approximately the same time, the 35 

bats take off from their roost, navigating through its passages toward the exit. The high density of 36 

bats flying simultaneously in great proximity poses many challenges for orientation in such a 37 

crowded and noisy environment. Flying while avoiding collisions, often in a pitch-black cave, 38 

demands the continuous detection and localization of both obstacles and nearby bats3,4. Employing 39 

echolocation, bats emit strong ultrasonic signals and interpret the reflected echoes to perceive their 40 

surroundings5. The reception of neighbors’ loud calls, which share similar acoustic features with 41 

their own calls, can potentially hinder the bats’ ability to detect the faint echoes reflected off the 42 

walls and the surrounding bats5,6. We examined whether bats could rely solely on echolocation to 43 

exit the roost even during such a chaotic ‘rush hour’.  44 

The question of how bats cope with acoustic interference — i.e., the masking of potential echoes 45 

by conspecific signals — has been extensively researched using playback experiments, field 46 

observations, on-body tags, and computational simulations7–17. However, much of this research 47 

has focused on foraging bats in small groups5,6,9,16,18–20. The challenges bats encounter during roost 48 

exits (e.g., cave exits) differ markedly from those encountered during group foraging. Bat density 49 

during roost exits is significantly higher, and bats need to detect and follow static walls or 50 

obstacles, which produce loud echoes, rather than small, sporadic prey items that generate faint 51 

echoes21. Their flight during exits is also more directional and involves avoiding collisions with 52 

conspecifics, in contrast to the erratic hunting maneuvers typically observed while foraging. 53 

Echolocation studies during dense collective movement are scarce4,6,22–25, likely due to the 54 

complexities in recording separate echolocation calls and tracking individual flights within the 55 

swarm.  56 

While collective movement has been extensively studied in various species, such as insect 57 

swarming, fish schooling, and bird murmuration26–32, as well as in swarm robotics, where agents 58 

perform tasks such as coordinated navigation and maze-solving33–35, most studies have focused 59 

on movement algorithms that assume full detection of neighbors36–43. Some models have 60 

incorporated limited interaction rules where individuals respond to only one or a few neighbors 61 
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due to sensory constraints44,45 However, fewer studies have explicitly examined how sensory 62 

interference, occlusion, and noise influence decision-making and affect collective movement46. 63 

The present study addresses these gaps by introducing an agent-based sensorimotor model based 64 

on the well-documented echolocation capabilities of bats, simulating multiple bats pathfinding 65 

their way out of a cave-like structure. We modeled the echolocation behavior of two insectivorous 66 

bat species: Pipistrellus kuhlii (PK), which roosts in abandoned buildings and frequently navigates 67 

through conspecific-dense, cluttered corridors and the cave dwelling Rhinopoma microphyllum 68 

(RM) which emerges from its roosts with thousands of individuals simultaneously. These two 69 

species differ in their echolocation signals - PK echolocation signals are characterized by a wider 70 

bandwidth and a higher terminal frequency than RM calls. We quantified the performance of an 71 

individual bat flying among conspecifics, demonstrating that even a relatively simple sensorimotor 72 

algorithm can facilitate successful orientation in such complex environments. The modeling 73 

approach enabled us to explore how various biological and ecological factors influence 74 

successful navigation under such challenging conditions.  75 

 76 

Results 77 

Our model was designed with conservative assumptions regarding bats’ sensing, movement, and 78 

sensorimotor integration, aiming to underestimate their capabilities and thereby establish a lower 79 

bound on their actual performance. Real bats likely outperform the model’s predictions. In our 2D 80 

simulations7, each bat emits sound signals and receives echoes reflected from the roost walls and 81 

other bats, while also encountering masking signals caused by calls from conspecifics. These 82 

masking signals can interfere and completely eliminate echo detection (which we refer to as 83 

jamming) or cause echo localization errors. After estimating the distance and direction of each 84 

detected reflector, the bat adjusts its echolocation parameters and maneuvers to find the exit while 85 

simultaneously avoiding collisions. The bats dynamically adjust their echolocation parameters—86 

including call rate, duration, and frequency range—based on the estimated distance to obstacles, 87 

following the well-documented transition between search, approach, and buzz phases observed in 88 

echolocating bats (see7 and Methods). Their reception was modeled using a biologically inspired 89 

filter-bank receiver comprising 80 gammatone channels7,47,48. Each bat adjusted its flight following 90 

a simple pathfinding algorithm based solely on the estimated locations of the detected reflectors 91 
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(see Methods, Supplementary Figure 1, and Supplementary Movie 1 for additional details). The 92 

bats had to exit a roost designed as a corridor (14.5 m long x 2.5 m wide), with a right-angle turn 93 

located 5.5 m before the exit (Figure 1A). Additionally, an obstacle (1.25 m wide) was situated 94 

2.25 m in front of the opening. The simulated bats initiated their flight from the far end of the 95 

corridor, within a randomly selected 1.5 × 2 m² area, taking off in the general direction of the exit 96 

(±30 degrees), without prior knowledge of the roost's structure.  97 

The sensory model accounted for six types of acoustic signals: (1) the bat's own calls, (2) echoes 98 

from conspecifics, (3) echoes from walls in response to the bat's own calls (i.e., desired wall 99 

echoes), (4) echoes from conspecific calls reflected off other bats, (5) echoes from conspecific 100 

calls reflected off walls, and (6) the conspecific calls themselves. In the baseline model, bats were 101 

assumed to reliably distinguish between all these signal types. In contrast, the confusion model 102 

described below specifically tested the impact of failing to distinguish between desired wall echoes 103 

(3) and wall echoes generated by conspecific calls (5), while preserving the bat’s ability to identify 104 

all other signal types. In brief, the bat responded to echoes as follows (see Methods and 105 

Supplementary Figure 1 for details): If an obstacle or a conspecific was detected in front of the bat 106 

and was too close, the bat would maneuver to avoid a collision. Otherwise, for exit-seeking, the 107 

bat would follow the contour of the walls by steering toward the farthest detected obstacle ahead. 108 

If a gap greater than 0.5 m was identified between adjacent reflectors, the bat directed its trajectory 109 

toward the center of the gap.  110 

The ability of the bats to exit the roost within 15 sec was evaluated for different group sizes, from 111 

a single bat and up to 100 individuals. For simplicity, we will refer to the initial density at the 112 

cave’s far end as the number of bats per 3m2 (i.e., for groups of 100 bats, the density is 100 113 

bats/3m2, or 33.3 bats/m2). The bat densities we tested were chosen to reflect the typical range of 114 

bat densities observed in natural caves during emergence events25,49,50. Key model parameters, 115 

such as the sensory integration window, object target strength, echolocation parameters, and flight 116 

velocity (see Table 1), were manipulated and their impact on the exit performance was analyzed. 117 

To explicitly quantify the effect of sensory masking vs. the effect of collision avoidance (i.e., 118 

spatial interference) only, we turned the acoustic interference on and off to measure its impact. 119 

Each scenario was repeated as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12; 120 

40 bats: 12; 100 bats: 6 (see Table 1), while misidentification rate, multi-call clustering, and 121 

wall/conspecific target strength were tested only up to 40 bats (see Table 1). 122 
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 123 

Figure 1: The sensorimotor model. (A) Top view of the cave with three bats’ trajectories. The focal bat is 124 
shown in black. All bats’ flight trajectories are displayed while the bats’ moment-to-moment decisions are 125 
represented by the colored lines: blue - random flight, yellow – collision avoidance, light green – wall-126 
following, turquoise – movement toward a wall gap (see panel D for details). Green squares depict reflectors 127 
detected by the focal bat along its route. (B) A zoomed-in view of the marked rectangular area in Panel A, 128 
where the focal bat (black) emitted one echolocation call (black) and received echoes from the cave walls 129 
(green) and from two other bats (blue). It also received conspecifics’ calls (red) and their reflection from the 130 
cave walls (orange), as well as the reflections from other bats (pink). Green squares indicate points that were 131 
detected by the focal bat from this call and red x’s indicate missed points due to acoustic masking (i.e., 132 
jammed reflectors). The locations of the detected reflectors (green squares) are marked according to their 133 
localization by the bat (with simulated errors).  The lines near the bats depict their flight direction. (C) The 134 
acoustic scene received by the focal bat is as depicted in B, including the emitted call and all received signals 135 
(colors as in panel B). (C1) The time-domain plot displays the envelope of signals, encompassing the emitted 136 
call and the received signals: the desired echoes from the walls and conspecifics; the calls of other bats; the 137 
echoes returning from conspecific calls and reflected off the walls and off other bats. Notably, in this example, 138 
some of the desired wall-echoes are jammed by stronger self-echoes reflected from nearby conspecifics. (C2) 139 
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The spectrogram of all the received signals presented in C1;  for clarity, the emitted call is not depicted. (C3) 140 
The responses of the active channels of the cochlear filter bank (FB channel) after de-chirping. Each channel 141 
is represented by its central frequency on the y-axis. Each black dot represents the timing of a reaction that 142 
was above the detection threshold in each channel. Note that early reactions in low-frequency channels 143 
(marked by a yellow arrow) result from the stimulation of those channels caused by the higher frequencies 144 
of the downward FM chirp. However, most of these stimulations do not reach the detection threshold and are 145 
therefore not detected (see Methods). (C4) The detections of each channel are convolved with a Gaussian 146 
kernel, summed, and compared with the detection threshold (dotted red line). Colored asterisks mark peaks 147 
that were classified as successful detections—those identified in both the interference-free and full detection 148 
conditions (see Methods for details). Other peaks may originate from masking signals or overlapping echoes 149 
that did not meet the detection criteria (colors of the sources are as defined above). Panel D depicts the 150 
pathfinding algorithm used by the bat. The algorithm involves a correlated-random flight during the search 151 
phase (blue), collision avoidance (yellow), flying along the wall at a constant distance (green), and flying 152 
toward the center of a gap between obstacles as an indicator of a possible exit (cyan). After each echolocation 153 
call, the bat awaits an IPI (Inter Pulse Interval) period before processing the detections, adjusting flight and 154 
echolocation parameters, and emitting the next call. Based on the received signals, it then modifies its next 155 
call design and adjusts its direction and speed accordingly.  For a detailed diagram of the complete 156 
sensorimotor process see Supplementary Figure 1. 157 

 158 

Bats find their way out of the cave even at high conspecific densities:  159 

We first examined how bat density affects bats’ ability to exit the cave, both alone and in a group. 160 

The probability of exiting the cave within 15 seconds—defined as the proportion of bats that 161 

successfully exited within this time frame—was significantly reduced at higher densities (Figure 162 

2A, see Supplementary Movie 1 for a view of the bats’ movement, p<10-10, t =-23, DF=4077, 163 

GLM, see details in Table 1). In trials in which a single bat was flying alone, it successfully exited 164 

the cave in 100% of the cases. Even without sensory interference, the probability of exiting 165 

decreased significantly from 100% to 86%±1.4% and 91%±1.7% at densities of 100 PKs/3m2 and 166 

100 RMs/3m2, respectively (mean ± s.e.). When acoustic interference was added, the exit 167 

probability further decreased to 63%±1.4% and 67%±1.4% for 100 PKs and RMs, respectively 168 

(see Figure 2A). 169 

The difference in exit probability between the two species was not significant (p=0.08, t =1.74, 170 

DF=4077, GLM as above, Figure 2A). Similarly, the difference in echolocation parameters 171 

between the two species did not affect the collision rate with the walls (with a maximum of 0.29 172 

and 0.3 collisions per bat per second for PK and RM, respectively, with 100 bats (p=0.63, t =-0.48, 173 

DF=4077, GLM, Figure 2C, see details in Table 1). To quantify sensory interference, we defined 174 

a jammed echo as an echo entirely missed due to masking. The jamming probability, which was 175 
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calculated as the number of jammed echoes divided by the total number of self-echoes, was 176 

significantly higher for RM compared to PK. The maximum difference between the two models 177 

was 14.3% at a density of 10 bats, with a smaller difference of 9.8% observed at 100 bats (p<10-178 

10, t =6.56, DF=4077, GLM, Figure 2D, see details in Table 1). Accordingly, PK demonstrated  a 179 

minor but significant advantage in detecting the cave walls (p=0.024, t =-2.25, DF=4077, GLM, 180 

Figure 2E, see details in Table 1). With 100 bats flying together, the probability of detecting a wall 181 

echo at a distance of 1 m in a single call was around 50% and 46% for PK and RM, respectively. 182 

Despite this minor disadvantage in detection, RM bats exhibited a better time-to-exit average than 183 

PK bats, being 0.5 seconds faster to exit (p=0.0005, t =-4.06, DF=3533, for n=40 bats, Figure 2B). 184 

Additionally, RM bats experienced a significantly higher probability of their self-generated 185 

echoes, reflected off conspecifics, being jammed (p = 0.00016, t = 3.8, DF = 3593, GLM; see 186 

details in Table 1). 187 

 188 

 189 

Figure 2: Exit performance of P. Kuhlii (PK) and R. Microphyllus  )RM(.  (A) Sensory interference 190 
significantly impaired the probability of exiting the cave (compare dashed lines with continuous lines). The 191 
probability of a successful exit also declined as the number of bats increased, with no significant difference 192 
observed between the species when masking interference was applied. The insert shows the spectrograms of the 193 
echolocation calls of PK (top) and RM (bottom). (B) The time-to-exit, which was calculated for successful trials 194 
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only, and (C) the collision rate with the walls both increased as a function of the number of bats. (D) The 195 
probability of jamming significantly increased to about 55% and 63% with 100 bats for PK and RM, respectively. 196 
(E) The detection probability of a wall reflector at one meter or less in front of a bat decreased as a function of 197 
the number of bats. In panels (A-E), circles represent means and bars represent standard errors (see details in 198 
Table 1). Asterisks indicate significant differences between the lines in each panel.  199 

Multi-call integration improves exit performance: We next examined whether bats improve their 200 

performance when integrating information from several consecutive calls. The integration window 201 

determines the number of previous calls the bat uses at each step to guide its next movement 202 

decision (see Methods and Supplementary Figure 2A). In the basic multi-call integration model, 203 

detections from the previous calls — by default the last five — were stored in an allocentric (x-y) 204 

reference frame, with each detection treated independently as a potential obstacle without 205 

clustering or filtering. At each decision, the bat takes all of these detections into account when 206 

guiding its movement and echolocation. The probability of exiting the roost significantly increased 207 

when increasing the size of the integration window for all bat densities (p<10-10, t =28.5, 208 

DF=10197, GLM, Figure 3A, see details in Table 1). For example, at a density of 40 bats/3m2, the 209 

exit probability improved from 20%, to 75%, and to 87% as the window size increased from one, 210 

to three, and to 10 previous calls, respectively. In addition, increasing the window size resulted in 211 

a significant improvement in the time-to-exit and the avoidance of wall collisions (p<10-10, t =-212 

12.8, DF=7661; p<10-10, t =-46.5, DF=10197, respectively, GLM, see details in Table 1). With 213 

100 bats, the collision rate decreased by a factor of 2 from 0.53 to 0.25 collisions per second as the 214 

window increased from 1 to 10 calls. The size of the integration window had no significant effect 215 

on the jamming probability (p=0.37, t =0.9, DF=10197, GLM, see details in Table 1).  216 

Exit probability was maximal at an intermediate flight-speed: We observed a significant and non-217 

linear effect of the flight speed of the bats on the performance, as shown in Figure 1Figure 3B 218 

(p<10-10, t =-29.9, DF=10196, GLM, see details in Table 1). The exit probability increased with 219 

flight speed until it reached a maximum at 6-8 m/s and then declined rapidly. This was the case 220 

for all bat densities, with the maximal exit probability ranging between 65% to 99%. At the optimal 221 

velocity, the time-to-exit was also minimal. However, the collision rate increased monotonically 222 

with speed, with a steep incline above the optimal speed. 223 

 224 
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 225 

Figure 3: Exit performance as a function of key sensorimotor parameters. (A) The effect of the 226 
integration window  on the probability of exiting the roost, the time-to exit, the rate of collisions with the 227 
walls, and the probability of jamming (from left to right, respectively). Each colored line shows the trend as 228 
a function of the window-size for different bat densities, with each color representing a specific density. Note 229 
that a window size of 0 indicates that only the most recent call is used in the bat’s decision-making, without 230 
integrating detections from previous calls. (B) The effect of the nominal flight speed of the bats, with panels 231 
and line-colors as in panel A. An optimal speed of approximately 6 to 8 m/sec can be observed for all densities 232 
above one bat. (C) The effect of call intensity on exit performance, panels as in (A). In all panels, circles 233 
represent means and bars represent standard errors. Error bars depicting standard errors are presented but are 234 
very small due to the large number of simulation repetitions. See Table 1 for the number of simulated bats.  235 

Call intensity had only a minor effect on exit performance and only at high bat densities: For 236 

low bat densities (<40 bats), call intensity did not have a significant impact on either exit 237 

probability or collision rate (Figure 3C, p=0.89, t =0.13, DF=5757; p=82, t -0.21, DF=5757, 238 

respectively, GLM, see details in Table 1). Call intensity affected exit performance only when the 239 
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intensity dropped to 100 dB-SPL (@ 0.1m) and only at a high bat density of 100 bats/3m2 (Figure 240 

3Figure 3 C). In this scenario, the exit probability declined from approximately 60% to 49.5% 241 

(p=0.003, F = 8.45, DF = 2396, One-way ANOVA with 'hsd' post hoc test), and the collision rate 242 

increased from 0.3 to 0.35 collisions per second (p<3·10-6, F = 22.18, DF = 2396). Notably, this 243 

low intensity is below the typical search-call intensity of most echolocating bats. At the same bat 244 

density (100 bats/3m2), further increasing the call intensity to above 100dB-SPL had no significant 245 

effect on either exit probability (p=0.6) or collision rate (p=0.07). Calling louder also slightly, but 246 

significantly, decreased the jamming probability at all bat densities, with a decrease of 3.5%±8% 247 

to 5.5%±5% (mean ± s.e.) (p=0.02, t =-2.26, DF=8157, GLM, see Table 1).  248 

While confusion between the desired echoes and those from conspecific calls may significantly 249 

impair exit performance, multi-call clustering helps to mitigate this. We next addressed the 250 

challenge of echo classification, assuming that a bat can differentiate an echo resulting from its 251 

own calls from echoes resulting from the calls of other bats. To examine this assumption, we tested 252 

another model, referred to as the confusion model, in which bats responded similarly both to wall 253 

echoes returning from their own emissions and to those from conspecific emissions, treating all as 254 

their own echoes. This confusion significantly decreased exit performance for all bat densities 255 

(above one bat). The probability of a successful exit for a density of 40 bats/3m2 dropped from 256 

83.3±2.4% to 14.6±2.3% (p<<10-10, t =-20.7, DF=2877, GLM, see details in Table 1), the exit time 257 

increased from 7.6±0.18 to 9.3±0.2 seconds (p<<10-10, t =15.5, DF=2157, GLM), and the collision 258 

rate increased significantly from 0.2±0.007 to 0.8±0.013 collisions per second (p<<10-10, t =-30, 259 

DF=28777, GLM, see Figure 4, red and yellow lines).  260 

To further examine whether this substantial decrease in performance could be mitigated  even 261 

without improving echo identification, we tested an enhanced integration model that, in addition 262 

to extending the number of calls integrated, clustered spatially close detections, removed outliers, 263 

and estimated wall directions based on grouped reflectors (see Methods and Supplementary Figure 264 

2B). This ’multi-call clustering’ significantly improved performance, but exit probability and 265 

time-to-exit still remained significantly lower than without echo-confusion: exit probability = 266 

58±3% in comparison to 83.3±2.4% without echo confusion (p<<10-10, t =18.3, DF=28777, GLM), 267 

time-to-exit =9.3±0.2 seconds (p<<10-10, t =-13.7, DF=1996, GLM), see Figure 4, yellow line. The 268 

results above are reported for a density of 40 bats/3m2. Interestingly, the multi-call clustering 269 
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restored the collision rate to the levels observed under the "No Confusion" condition (p=0.68, t =-270 

0.42, DF= 2877, GLM, see Figure 4C, dark-purple and red lines).  271 

 272 

Figure 4: The impact of confusion on performance. The figure illustrates the impact of classification 273 
confusion on roost-exit performance under various conditions. Blue lines depict trials with masking, while 274 
assuming that bats can distinguish between echoes from their own calls and those of conspecifics (referred 275 
to as "No Confusion"). Red lines depict performance where confusion between echoes is assumed. Yellow 276 
lines depict performance under the confusion condition, with the added capability of   multi-call clustering 277 
in a short-term working memory (referred to as “confusion with mitigation”, see text for further details). In 278 
all panels, circles represent means and bars indicate standard errors. (A) The probability of exiting the roost 279 
significantly decreased with masking and confusion. In conditions with confusion and no aggregation 280 
process, only 15% of bats successfully exited the roost, at a density of 40 bats/3m2. Multi-call clustering 281 
partially mitigated the confusion effect but did not eliminate it. (B) Bats with the ability to distinguish 282 
between echoes demonstrated significantly shorter exit times than those experiencing confusion. Note that 283 
time-to-exit refers only to successful attempts. (C) The collision rate with walls was highest for bats 284 
experiencing both masking and confusion but decreased significantly when without confusion.  Multi-call 285 
clustering restored performance to the "No Confusion" condition, reducing collision rates accordingly, at 286 
densities between 1 to 40 bats/3m2. 287 

 288 

Effect of Wall and Conspecific Target Strengths on Exit Performance: Increasing the wall 289 

target strength significantly enhanced navigation performance (Supplementary Figure 3, Table 1), 290 

improving exit probability by up to 64% and reducing time-to-exit by up to 2.8 seconds (p << 291 

10⁻¹⁰). Stronger wall echoes improved environmental awareness but also slightly increased 292 

masking of desired conspecific signals. 293 
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In contrast, changes in conspecific target strength had a much smaller effect (Supplementary 294 

Figure 4, Table 1), with only minor improvements in detection and collision rates, and no 295 

significant impact on exit probability. This likely reflects the fact that both desired and masking 296 

signals scale similarly with conspecific reflectivity. Overall, the model showed low sensitivity to 297 

variations in conspecific target strength. 298 

 299 

Key parameter Tested 

range 

Default 

value 

Effect Size on Explained Variable GLM 

 

Explaining 

factors 
Exit prob. 

(%) 

Time-to-exit 

(sec) 

Jamming- 

prob. (%) 

Obs. Collision  

(sec-1) 

Number Of BatsΩ 

 

[1, 2, 5, 10, 

20, 40, 100] 

All 

Values 

-0.37/bat* 

[63:100] 

0.044/bat * 

[4.6:8.9] 

0.54/bat*  

[0:54] 

0.25/bat* 

 [0.05:0.3] 

Number of bats 

Bat species [PK, RM] PK 4.5  

[63:67] 

-0.4* 

[8.5:8.9] 

9* 

[54:63] 

0.01  

[0.29:03 ]. 

Number of bats,  

bat species 

Integration Window (#) [0,1,3,5,10] 5 0.41/call* 

[29:70] 

-0.16/call* 

[9.2:7.6] 

0.01/call  

[54:55] 

0.27/call 

[0.25:0.53] 

Number of bats, 

integration 

window size 

Nominal flight speed 

(m/s) 

[2,4,6,8,10] 6 6/(1m/s), 

-12/(1m/s)* 

[15:63] 

-1/(1m/s), 

1/(1m/s)* 

[6:9.6] 

1.4/(1m/s)* 

 

[55:65] 

0.18/(1m/s)*  

 

[0.07:1.3] 

Number of bats, 

flight speed, 

square of flight 

speed 

Call level 

(dB-SPL, @ 0.1m) 

[100,110,120,

130] 

120 13ѱ  

[50:63] 

-0.5 

[7.9:8.4] 

0.5/10dB*  

[53:58] 

0.07 ѱ  

[0.29:0.36] 

Number of bats,  

call level 

Misidentification Ω  [Yes/No] N -69* 

[14:83] 

1.3* 

[7.6:8.9] 

30* 

[50:80] 

0.6* 

[0.2:0.8] 

Number of bats, 

With and without 

confusion  

Misidentification and 

multi-call clustering Ω  

[Yes/No] N -23* 

[58:83] 

1.7* 

[7.6:9.3] 

29* 

[50:79] 

-0.02* 

[0.18:0.2] 

Number of bats, 

With and without 

multi-call 

clustering 

Masking  [Yes/No] Y 23* 

[63:86] 

0.8* 

[8.0:8.8] 

54* 

[0:54] 

0.03 

[0.26:0.29] 

Number of bats, 

With and without 

masking 

Wall target strength 

(dB) α, Ω 

[-33, -23,  

-13, -3] 

-23 16/10dB * 

[23:87] 

0.7/10dB * 

[6.6:9.5]  

 

-8.5/10dB * 

[34:68] 

0.07/10dB * 

[0.19:0.47] 

Number of bats,  

wall target strength 

Conspecific target 

strength (dB) β, Ω 

[-49, -43, -33, 

-23] 

-23 -1.5/10dB 

[85:91] 

0.25/10dB* 

[7.2:8.15] 

-0.5/10dB  

[48:50] 

0.1/10dB 

[0.16:0.2] 

Number of bats,  

conspecific target 

strength 

Table 1: Key model parameters and their effects on performance metrics. The table presents the key 300 
parameters tested, their ranges, default values, and effect sizes on various performance metrics: exit 301 
probability, time-to-exit, jamming probability, and collision rate with obstacles. The parameters comprised 302 
the number of bats, bat species (PK-Pipistrellus kuhlii, RM –Rhinopoma microphyllum), integration window, 303 
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nominal flight speed, call level, echo mis-identification with multi-call clustering (yes/no), masking (yes/no), 304 
wall target strength, and conspecific target strength. In each scenario, all parameters except the tested one 305 
were set to the default value. Call levels are reported in dB-SPL, referenced at 0.1 m from the source. Effect 306 
sizes for each parameter are explicitly listed for all four-performance metrics, expressed as the change per 307 
unit of the tested parameter (e.g., per bat or per 10 dB). For flight speed, a non-monotonic relationship was 308 
observed, and values are reported both before and after the peak performance (see Results, Fig. 3B).Values 309 
in square brackets indicate the minimum and maximum of the metric across the tested range. . Asterisk (*) 310 
indicates a significant impact. Each scenario was tested using Generalized Linear Models (GLMs) with 311 
number-of-bats and the tested parameters set as fixed explaining variables. Exit probability and jamming 312 
probability were treated as binomially distributed, collision rate was treated as a Poisson distributed, and all 313 
other variables were considered normally distributed. Explaining variables were set as fixed factors. The 314 
number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120, 5 bats: 48; 10 bats: 24; 20 315 
bats: 12; 40 bats: 12; 100 bats: 6. Ω Misidentification rate, multi-call clustering, wall target strength, and 316 
conspecific target strength were simulated only up to 40 bats due to significantly longer run-times. ѱ A 317 
significant difference in call intensity was found only for a bat density of 100 bats/3m2, and between the 318 
group with a level of 100dB-SPL and all other groups. α see Supplementary Figure 3. β see Supplementary 319 
Figure 4. 320 

 321 

Discussion 322 

We present a model-based approach that suggests how echolocating bats might find their way out 323 

of a crowded roost while contending with severe sensory interference caused by numerous nearby 324 

conspecifics. Our results demonstrate that a single bat, lacking prior knowledge of the roost’s 325 

structure, successfully found the exit in all simulated trials using echolocation alone. As bat density 326 

increases, the bats face increased collision risks and more substantial acoustic interference, both 327 

of which reduce the probability of efficiently finding the exit. Nevertheless, even at densities of 328 

100 bats/3m2, most bats (63%) successfully exited the roost within a short timeframe. These results 329 

are based on a 2D simulation with up to 33 bats/m², under the assumption that bats can distinguish 330 

their own echoes from those of conspecifics. We demonstrate how a simple sensorimotor approach 331 

can solve this supposedly challenging task. This approach encompasses the following principles: 332 

(1) emission of echolocation calls; (2) reception of reflected echoes and masking signals; (3) 333 

detection of reflectors (including walls and conspecifics) using a gammatone filter bank biological 334 

receiver; (4) localization of the detected objects; (5) employment of multi-call  integration of 335 

acoustic detections; (6) adjustment of flight and echolocation behavior based on the distance and 336 

angle to the reflectors; and (7) application of simple pathfinding rules to follow walls and gaps 337 

while avoiding collisions. Notably, despite the jamming of a substantial percentage of the echoes 338 
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— particularly, with 100 bats, 50% of the echoes from nearby obstacles at ~1 m distance — the 339 

bats managed to maneuver correctly even with this simple approach and partial data.  340 

A key component of this success was the multi-call integration: increasing the number of stored 341 

calls from one to ten markedly improved performance, raising the exit probability from 20% to 342 

87% and halving the collision rate. Real bats likely use a much more sophisticated approach that 343 

also includes memorizing the roost’s structure51, using landmarks inside the roost52, reliance on 344 

the movement of nearby conspecifics43,49, and exploitation of other sensory modalities. We thus 345 

expect their actual performance to surpass that of our modeled bats.  346 

Our model suggests that acoustic jamming might be less problematic than has been generally 347 

assumed5,11,53, and that movement under severe acoustic masking could be mitigated by increasing 348 

the call-rate, creating a redundancy across several calls- similar to how real bats behave in a 349 

complex environment6. In our model, the Inter-Pulse Interval (IPI) naturally varied according to 350 

established echolocation behavior, decreasing from 100 msec in the search phase to 35 msec (~28 351 

calls per second) in the approach phase, and further to 5 msec (200 calls per second) during the 352 

final buzz (Table 2). The results indicate that this redundancy, combined with simple sensorimotor 353 

heuristics, enhances successful navigation. This is consistent with several recent studies that have 354 

pointed in this direction7,24,25.  355 

While echolocation phases—search, approach, and buzz—are traditionally associated with prey 356 

capture, similar patterns have been documented in non-foraging tasks such as landing, obstacle 357 

avoidance, clutter navigation, and drinking54–64. In these contexts, bats modulate call duration and 358 

inter-pulse intervals according to object proximity, generating phase-like transitions even without 359 

prey. This supports the interpretation of phase structure as a general proximity-sensing strategy 360 

rather than a foraging-specific behavior. In our simulations, bats operated predominantly in the 361 

approach phase due to the cluttered cave environment—consistent with natural emergence 362 

behavior, where navigation dominates over open-space search. Accordingly, our use of 363 

echolocation phases in the model is biologically plausible across a range of sensory-guided tasks. 364 

The bat densities we simulated, ranging from 1 to 100 bats per 3m2, reflect a wide range reported 365 

in field studies. Although bat colonies can be much larger than 100 bats, the maximal simulated 366 

density in our model (100 bats per 3 m²) resulted in bats flying in very close proximity, with an 367 

average nearest-neighbor distance of 0.27 meters. This density is higher than some of the most-368 
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dense reported bat aggregations, including studies on Miniopterus fuliginosus49, Myotis 369 

grisescens65, and Tadarida brasiliensis4,50,66, where bats emerge from the roost at rates of 15 to 370 

500 bats per second, but fly with an average distance of 0.5 meters between individual bats.   371 

We compared the performance of two FM echolocating insectivorous bat species: Pipistrellus 372 

kuhlii (PK) and Rhinopoma microphyllum (RM). PK bats emit wideband echolocation signals that 373 

are less prone to jamming than RM bats’ narrowband signal15,67, as wideband signals distribute 374 

energy across a broader frequency range and are thus more robust against interference9,68 . Our 375 

findings show that PK signals slightly reduce jamming probability (by 9%) and improve wall 376 

detection. However, no significant differences in exit probabilities were noted between the two 377 

species. 378 

Using a simulation allowed us to separate the effects of acoustic interference (masking) and 379 

spatial interference (collision avoidance) and revealed new insights into the sensorimotor 380 

strategy that could plausibly be used by real bats. The spatial interference reduced the probability 381 

of exiting the roost from 100% to 87%, while the acoustic masking further decreased it to 63%. 382 

Increasing call intensity had little effect on exit performance, although slightly improving it at high 383 

bat densities. When all bats increased their calling intensity, both desired echoes and masking 384 

signals intensified equally, resulting in only a marginal effect. This was tested by varying call 385 

intensity levels (100-130 dB SPL) in our simulations (Table 1), demonstrating that beyond a 386 

certain level (~110 dB SPL), there is no further benefit in improving obstacle detection. These 387 

results align with previous studies that have drawn similar conclusions7,24.  388 

Bats constantly adjust their flight speed to their surroundings69–72 and specifically when 389 

conspecifics are nearby73. Our study suggests that the optimal velocity for flying through a 390 

crowded roost ranges from 6 m/sec to 8 m/sec for densities of 2-100 bats/3m2. Exceeding this 391 

velocity-range led to a significant drop in exit probability due to a significant increase in wall 392 

collisions. We found that this speed did not depend on bat density in accordance with the 393 

observations of Theriault et al.50. Notably, the reported velocities of RM when exiting a cave25 and 394 

PK emergence velocity near the cave74 are close to the speed that appears optimal, based on our 395 

simulations. 396 

We also tested the effects of wall and conspecific target strengths on navigation. Stronger wall 397 

echoes substantially improved exit probability and reduced obstacle collisions, despite slightly 398 
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increasing masking of conspecific echoes (Supplementary Figure 3). In contrast, changes in 399 

conspecific reflectivity had minimal impact, likely because both desired and masking signals 400 

scaled similarly (Supplementary Figure 4). This result may also stem from our model’s assumption 401 

that bats slow down, but continue flying at the same direction following a collision with a 402 

conspecific.  403 

Our basic model assumed that bats can distinguish between wall echoes and conspecific echoes, 404 

as demonstrated in previous studies 75–77. We suggest that this is a feasible assumption because 405 

echoes from cave walls are longer and exhibit distinct spectro-temporal patterns, whereas echoes 406 

from smaller objects, such as conspecifics, are shorter47,78,79. However, wall echoes reflected from 407 

conspecific calls might resemble those from the bat’s own calls in their amplitude and time-408 

frequency characteristics 20,73,80. This led us to question how the misidentification of such echoes 409 

as obstacles might affect navigation. When unable to distinguish between these echoes, the 410 

simulated bats responded to all as if they were their own and thus mis-localized conspecific wall 411 

echoes. The confusion led to a substantial drop in exit performance, with only 15% of the bats 412 

successfully exiting compared to 82% under no-confusion conditions, at a density of 40 bats/3m2. 413 

At the same time, the collision rate increased markedly from 0.2 to 0.85 collisions per second. 414 

These results demonstrate the vital importance of echo discrimination for successful navigation, 415 

highlighting both the necessity of distinguishing between self and conspecific echoes and the 416 

classic challenge of detecting desired signals in noisy environments. There is a substantial 417 

evidence in the literature supporting the assumption that bats can recognize their own echoes and 418 

reliably distinguish them from those of conspecifics68,75–77,81.  419 

Previous studies have also demonstrated that bats can aggregate acoustic information received 420 

sequentially over several echolocation calls, effectively constructing an auditory scene in complex 421 

environments5,82–86. Bats are also known to emit call sequences in groups, particularly when 422 

spatiotemporal localization demands are high. Studies have recorded sequences of 2-15 grouped 423 

calls, supporting the idea that grouping facilitates echo aggregation83,87. Accordingly, we tested 424 

how multi-call clustering process—which included grouping nearby reflectors, removing outliers, 425 

and estimating wall orientation based on these clusters—could assist bats in pathfinding, even 426 

under the assumption of full confusion. At bat densities of 1 to 40 bats/3m2 with masking, the 427 

multi-call clustering completely restored the collision rate with walls from 0.85 back to 0.2 428 

collisions per second, and significantly improved the exit probability, raising it to 58%, although 429 
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it did not entirely eliminate the impact of confusion. Our assumption of total confusion between 430 

echoes from a bat's own calls and those from conspecifics, as well as our relatively simple 431 

clustering model, likely underestimates the true capabilities of real bats when flying in complex 432 

environments. 433 

Navigation in bats involves processing complex sensory inputs and applying effective decision-434 

making, often requiring an ability to switch strategies88–94. Bats possess a highly accurate spatial 435 

memory82,90,94–96, which is essential for tasks like long-distance migration51, homing97, and 436 

maneuvering in cluttered environments95. Additionally, they utilize acoustic landmarks to orient 437 

in total darkness52, occasionally rely on vision91,92, particularly at the cave edge where light is 438 

available, can passively detect echolocating peers, and perhaps eavesdrop on conspecifics’ 439 

echoes23. In this study we focused on whether echolocation alone is sufficient for one of the most 440 

difficult orientation tasks that bats perform – exiting a roost at high densities without prior 441 

knowledge of the roost’s shape, aside from the initial flight direction. Thus, our echolocation-only 442 

model, which was based on a five-call integration window during most simulations, probably 443 

underestimates real bats’ actual performance which also benefits from additional sensory input and 444 

can employ addition navigation strategies by sharing information between each other to coordinate 445 

and optimize the routes, such as manifested by swarming intelligence33,98,99.  446 

Our model highlights the importance of considering sensory interference in animal behavior 447 

research and illuminates the impressive capabilities of echolocating bats. Additionally, the model 448 

showcases the value of simulations and establishes a framework for future studies on collective 449 

movement and swarming animals, and on robotics in complex environments. 450 

 451 

Methods 452 

The simulated bats rely solely on echolocation to detect and locate obstacles and other bats by 453 

analyzing the sound waves they receive. They emit directional echolocation calls and receive the 454 

echoes reflected by roost walls and conspecifics, as well as the calls of conspecifics and the echoes 455 

returning from their calls. The bats adjust their flight trajectory and echolocation behavior based 456 

on the estimated location of the detected objects (range and angle), which deteriorates upon 457 

acoustic interference. The detection of the received signals is based on the mammalian gammatone 458 

filter bank receiver, under the assumption that bats can differentiate between the desired detected 459 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2025. ; https://doi.org/10.1101/2024.12.16.628648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.16.628648
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

obstacles, conspecifics’ echoes, and masking signals. We conducted 2D simulations with varying 460 

number of bats (from 1 to 100) to analyze the flight trajectories with and without masking 461 

interference by conspecifics. In the trials without masking interference the bats successfully 462 

detected walls and conspecifics without any hindrance. While real-world bat navigation occurs in 463 

3D space, the 2D framework represents a worst-case scenario for echolocation-based navigation, 464 

as it increases effective bat density and limits maneuverability compared to a full 3D environment. 465 

This approach provides a conservative test of jamming and collision avoidance while maintaining 466 

computational tractability, allowing for extensive simulation runs to explore different variables 467 

systematically. For a detailed description of the MATLAB simulation see Mazar & Yovel 20207. 468 

The simulation arena was designed to mimic a roost with a corridor-like layout, measuring 14.5 469 

meters in length and 2.5 meters in width, featuring a right-angle turn located 5.5 meters before the 470 

exit (see Figure 1A for a top-down view). All bats started at a random position within a 2 × 1.5 m 471 

area at the far end of the cave, each initiating flight within a 0.1-second window in a random 472 

direction between -30° and +30° relative to the exit (see Figure 1). They employ a simple 473 

navigation algorithm that dynamically adjusts flight direction based on the detected obstacles or 474 

conspecifics (Supplementary Figure 1 and Figure 1D). If no obstacles or conspecifics are detected, 475 

they continue in a correlated random walk with a maximal turning rate of approximately 30 476 

deg/sec. When obstacles are detected, they are first localized with an error (see below and7). Then, 477 

if an opening (i.e., a gap of at least 0.5 m between obstacles) is detected, the bats fly through it, if 478 

not, they follow the walls while maintaining a 0.8 m distance from them. When approaching an 479 

obstacle too closely (<1.5 m and at an angle <60o), they execute an obstacle avoidance maneuver. 480 

Close proximity to another bat (<0.4 m) triggers an avoidance maneuver away from the nearest 481 

conspecific. To evaluate the choice of these distances (1.5 m from walls and 0.4 m from other 482 

bats), we tested the sensitivity of the model to conspecific avoidance distances ranging from 0.2 483 

to 1.6 meters across bat densities of 2 to 40 bats/3m². We observed only a modest effect on exit 484 

probability at the highest density, where exit probability increased slightly from 82% to 88% (p = 485 

0.024, t = 2.25, DF = 958). No significant changes were observed in exit time, collision rate, or 486 

jamming probability across other densities or conditions (GLM, with the number of bats and 487 

avoidance distance set as fixed explanatory variables, and the outcome variable being one of: exit 488 

probability, time-to-exit, collision rate, or jamming probability). These findings confirm that the 489 

modeled behavior is largely insensitive to this parameter range. 490 
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If the bat collides with a wall, it immediately turns so that its new flight direction is at a 90° angle 491 

to the wall. Collisions between conspecifics, which are common in nature and generally not 492 

disruptive in low velocities, are not explicitly modeled. Instead, during the collision event the bat 493 

keeps decreasing its velocity and changing its flight direction until the distance between bats is 494 

above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the 495 

effort required to avoid collisions resulting in forced changes in flight’s direction and speed, rather 496 

than from the collision itself. Each decision relies on a multi-call integration window that records 497 

the estimated locations of detected reflectors from recent echolocation calls (see Supplementary 498 

Figure 2A). By default, this window includes the last five calls, and we systematically tested the 499 

effect of using between 1 and 10 calls. This algorithm functions without any prior knowledge of 500 

the bats’ location or the roost’s structure. To assess performance, we measured the probability of 501 

successfully exiting the roost within a 15-second window. The time-based exit limit was chosen 502 

because it is approximately twice the average exit time for 40 bats under acoustic interference in 503 

our model, allowing bats sufficient time to correct their trajectory and circle back if they missed 504 

the exit on the first attempt. This threshold keeps simulation times reasonable while still capturing 505 

the key aspects of exit dynamics. 506 

Echolocation behavior and flight speed follow the phases widely reported in insectivorous bats, 507 

categorized as "search," "approach," and "buzz"55,100–104 with specific echolocation parameters for 508 

Pipistrellus kuhlii (Kuhl's pipistrelle)70 and Rhinopoma microphyllum (greater mouse-tailed bat)25. 509 

The transition distances between these phases were identical for both species (see Table 2) and are 510 

based on empirical studies documenting hunting and obstacle avoidance behavior55,56,69,103–105. In 511 

nature, call parameters (Inter Pulse Interval (IPI), call duration, and start and stop frequencies) are 512 

primarily shaped by the target distance and echo strength. Accordingly, there is little difference in 513 

echolocation between prey capture and obstacles-related maneuvers, aside from intensity 514 

adjustments based on target strength 56,57,87,106. In our study, due to the dense cave environment, 515 

the bats are found to operate in the approach phase nearly all of the time, which is consistent with 516 

natural cave emergence behavior, where they are navigating through a cluttered environment rather 517 

than engaging in open-space search. Our model was designed to remain as simple as possible while 518 

relying on conservative assumptions that may underestimate bat performance. If, in reality, bats 519 

fine-tune their echolocation calls even earlier or more precisely during navigation than assumed, 520 

our model would still conservatively reflect their actual capabilities. 521 
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The simulated echolocation call consists of the dominant harmony of the bat’s FM Chirp (1st 522 

harmony of the PK and 2nd harmony of the RM). The echolocation signals used in our simulation 523 

were modeled as logarithmic FM chirps, implemented using the MATLAB built-in function (e.g., 524 

chirp(t, f0, t1, f1, 'logarithmic')). This approach aligns with the known nonlinear frequency 525 

modulation characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM). Table 526 

2 provides the specific echolocation parameters used in the model, based on Kalko 199569, and 527 

Goldshtein 2025 25. During the search phase, the bats fly at a nominal velocity of 6 m/sec, reducing 528 

it by half during the approach phase and continuously adjusting their speed according to the 529 

relative direction of the target, using a delayed linear adaptive law7,103,107. The maneuverability of 530 

the bats is constrained to a maximum of 4 m/sec², limiting both angular and linear accelerations. 531 

Additionally, our model includes random individual variations in terminal frequencies, assuming 532 

a normal distribution with a standard deviation of 1 kHz across the bats. 533 

Pipistrellus kuhlii (Kuhl's pipistrelle) 

Flight phase Search Approach Buzz 

Parameter  Start End Terminal 1 start Terminal 1 end Terminal 2 

Inter Pulse Interval [ms] 100 70 35 18 6 5 

Call duration [ms] 7 5 2 2 1 0.3 

Terminal frequency [kHz] 39 39 39 39 39 39 

 Chirp bandwidth [kHz] 8 35 30 30 20 20 

Call intensity [dB-SPL] 120 120 90 90 80 80 

Distance to target [m] >1.2 1.2 0.4 0.4 0.2 <0.2 

Rhinopoma microphyllum (greater mouse-tailed bat)  

Flight phase Search Approach Buzz 

Parameter  Start End Terminal 1 start Terminal 1 end Terminal 2 

Inter Pulse Interval [ms] 100 80 20 18 10 9 

Call duration [ms] 12 7 2 2 1.5 

 

0.75 

Terminal frequency [kHz] 26 26 26 26 26 23.5 

Chirp bandwidth [kHz] 3 4 5 3 3 3 

Call intensity [dB-SPL, @0.1m] 120 120 90 90 80 80 

Distance to target [m] >1.2 1.2 0.4 0.4 0.2 <0.2 
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Table 2: Echolocation parameters. The table presents the echolocation parameters of the two bat species 534 
we simulated during the specified flight phases (i.e., search, approach, buzz, and final buzz). In each phase, 535 
except for the search phase, in which the parameters remain constant, the parameters for each call are 536 
determined by the distance to the closest detected object.  537 

The sound intensity of the echoes generated by the bat’s own calls and those of its conspecifics 538 

are calculated using the sonar equation7,108 (pp. 196-198), as shown in Equation 1, geometrical 539 

relations are according to Supplementary Figure 5. The received levels of the masking calls are 540 

determined by using the Friis transmission equation109, as shown in Equation 2. All signal levels 541 

were simulated and reported in dB-SPL, referenced to 0.1 meters from the emitting bat. Bats are 542 

modeled acoustically as spherical reflectors with a fixed target strength of -23dB assuming 543 

reference distance 1 meter, reflecting sound isotropically. This approximates a sphere with a radius 544 

of 0.15 m, corresponding to the approximate wingspan of Rhinopoma microphyllum (RM) 25,110. 545 

While target strength can vary with wing posture and body geometry, we chose a representative 546 

value within the reported biological range for simplicity and model consistency. Our own 547 

measurement of a 3D-printed RM bat yielded a target strength of –32 dB, and a sensitivity analysis 548 

(Supplementary Figure 4) showed that model performance was only mildly affected across a wide 549 

range of target strengths (see Supplementary Figure 4). This supports the robustness of our 550 

approach to different sized bats. Walls are modeled as composites of individual reflectors placed 551 

20 cm apart; each treated as a sphere with a 20 cm radius and a target strength of -22.5dB. For 552 

simplicity, in our model, the head is aligned with the body, therefore the direction of the 553 

echolocation beam is the same as the direction of the flight. The directivity of the calls and the 554 

received echoes is defined by the piston model7,102 with radii of 3 mm for the mouth-gap and 7 555 

mm for the ear. The directivity is not directly influenced by velocity but follows behavioral 556 

dependent frequency changes. As the bat transitions from search to approach to buzz phases, it 557 

emits higher-frequency calls, leading to increased directivity. This shift coincides with a natural 558 

reduction in speed during the approach phase. Echo delays are calculated as the two-way travel 559 

time of the signals from the emitter to the target.  560 

Equation 1:  𝑷𝒓 = 𝑷𝒕 ∙
𝑮𝒕(𝝓𝒕𝒂𝒓𝒈𝒆𝒕,𝒇)∙𝑮𝒓(𝝓𝒕𝒂𝒓𝒈𝒆𝒕,𝒇)𝝀𝟐

(𝟒𝝅)𝟑𝑫𝟒 ∙ 𝟏𝟎−𝟐𝜶𝒂𝒕𝒕(𝒇)/𝟏𝟎∙(𝑫−𝟎.𝟏) ∙ 𝝈(𝒇) 

Equation 2: 𝑷𝒎𝒂𝒔𝒌 = 𝑷𝒕𝑮𝒕(𝝓𝒕𝒙𝒓𝒙
, 𝑓)𝑮𝒓(𝝓𝒓𝒙𝒕𝒙

, 𝑓) ∙ (
𝝀

𝟒𝝅𝑫𝒕𝒙𝒓𝒙
)

𝟐

𝟏𝟎−𝜶𝒂𝒕𝒕∙(𝑫−𝟎.𝟏) 
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Equation 3: 𝑷𝒆𝒄𝒉𝒐𝒆𝒔𝑭𝒓𝒐𝒎𝑴𝒂𝒔𝒌𝒊𝒏𝒈 = 𝑷𝒕 ∙
𝑮𝒕(𝝓𝒕𝒙 ,𝑓)∙𝑮𝒓(𝝓𝒓𝒙 ,𝑓)𝝀𝟐

(𝟒𝝅)𝟑𝑫𝒕𝒙
𝟐𝑫𝒓𝒙

𝟐 𝟏𝟎−𝜶𝒂𝒕𝒕∙(𝑫𝒕𝒙+𝑫𝒓𝒙−𝟎.𝟐) ∙ 𝝈(𝒇) 

where, 

 𝑃𝑟: level of the received signal [SPL] 

𝑃𝑡 : level of the transmitted call [SPL] 

𝑃𝑚𝑎𝑠𝑘 : level of the masking signal as received by the bat [SPL] 

𝑃𝑒𝑐ℎ𝑜𝑒𝑠𝐹𝑟𝑜𝑚𝑀𝑎𝑠𝑘𝑖𝑛𝑔 : level of the echoes reflected by conspecifics and received by the bat [SPL] 

Gt(𝜙, 𝑓): gain of the transmitter (mouth of the bat, piston model), as a function of azimuth and 

frequency (f) [numeric] 

𝐺𝑟(𝜙, 𝑓): gain of the receiver (ears of the bat, piston model) [numeric] 

𝜙𝑡𝑎𝑟𝑔𝑒𝑡 : the angle between the bat and the reflected object [rad] 

D: distance between the bat and the target [m] 

𝜙𝑡𝑥𝑟𝑥
, 𝐷𝑡𝑥𝑟𝑥

 : the angle [rad], and the distance [m] between the transmitting conspecific and the 

receiving focal bat (from the transmitter’s perspective) 

𝜙𝑟𝑥𝑡𝑥
, 𝐷𝑟𝑥𝑡𝑥

 : the angle [rad], and the distance [m] between the receiving bat and the transmitting 

bat (from the receiver’s perspective) 

𝜙𝑡𝑥
 : the angle [rad], between the masking bat and target (from the transmitter’s perspective) 

𝛼𝑎𝑡𝑡(𝑓): atmospheric absorption coefficient for sound [dB/m] 

𝜎(𝑓): SONAR cross-section of the target [m2]  

λ:  The wavelength of the signal [m] 

To maintain model simplicity, we did not incorporate Doppler effects in the echolocation model. 561 

While Doppler shifts can affect frequency perception, their impact on jamming and navigation 562 

performance is minimal in this context111. Moreover, the inter-individual random signals 563 

frequencies were larger than the expected Dopplers. In addition, the model does not assign echoes 564 

to earlier calls if their delays exceed the bat’s own Inter-Pulse Interval (IPI), and thus does not 565 

simulate pulse-echo ambiguity. 566 
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To model the detection process in the bat's cochlea, we employed a monoaural filter bank 567 

receiver47,112,113 consisting of 80 channels, each with three components: (i) a gammatone filter of 568 

order 8, acting as a bandpass filter with center frequencies logarithmically scaled between 10kHz 569 

and 80kHz7; (ii) a half-wave rectifier; and (iii) a lowpass filter (Butterworth, fc=8kHz, order=6). 570 

Object detection and distance estimation are conducted using Saillant’s method7,47,114, based on 571 

the sum of detections in the active channels, see Figure 1C, D. Initially, a de-chirping process 572 

calculates the reference frequency-delay by detecting the peak in the response of each channel to 573 

the emitted call in a noise-free environment. Subsequently, the received signal, containing both 574 

desired echoes and masking sounds, passes through the filter bank. In each channel, all peaks 575 

above a threshold level are detected and time-shifted by the de-chirp reference. The detection 576 

threshold in each channel was set to the higher of two values: either 7 dB above the noise floor (0 577 

dB-SPL) or the maximum received signal level minus 70 dB, thereby enforcing a dynamic range 578 

of 70dB. Peaks from all channels are aggregated in 5 µs windows and convolved with a Gaussian 579 

kernel with σ=5 µs. Output peaks that exceed the threshold level, set at 10% of the number of 580 

active channels, and fall within a time window of 100µs around the expected delay, are considered 581 

successful detections.  582 

To evaluate the impact of acoustic interference, we conducted the detection procedure twice. The 583 

first, termed “interference-free detection”, comprised only the desired echoes, with white Gaussian 584 

noise at a level of 0 dB-SPL and without masking signals. The second, termed “full detection” 585 

comprised the desired echoes, Gaussian noise, and the masking signals. Detected echoes in the full 586 

detection were defined by the strongest peak within a four-millisecond window (three milliseconds 587 

before and one millisecond after, accounting for forward and backward masking 24,115–117) detected 588 

above the threshold within 100µs of the interference-free detections. If the detected peak in the 589 

full detection condition was delayed by more than 100 µs compared to the interference-free case, 590 

it was defined as a miss-detection. Peaks with smaller timing shifts were considered detection 591 

with timing errors. Jammed echoes were defined as echoes that were detected under the 592 

interference-free condition but not detected under the full detection condition. The jamming 593 

probability was calculated as the ratio of jammed echoes in the full detection condition to the 594 

detected echoes in the interference-free condition. 595 

After detection, the bat estimates the range and the Direction of Arrival (DOA) of the reflecting 596 

objects. The range is determined by the delay of the detected echo, including any errors derived 597 
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from the filter-bank process in the “full detection” process (i.e., including all masking 598 

signals).7,110,113. The direction is not explicitly estimated through binaural processing. Instead, 599 

based on previous studies 115,118, we assumed that bats can estimate the direction of arrival with an 600 

angular error that depends on the Signal-to-Noise Ratio (SNR) and the angle. The inputs to this 601 

process include the peak level of the desired echo, the noise level, and the level of acoustic 602 

interference. The output is the estimated direction of arrival with a random error applied based on 603 

the SNR. At an angle of 0º and an SNR of 10 dB, the standard deviation of the error is 1.5º 119 and 604 

7 (Equation 4), with the error capped at a maximum of 3º in our model.  605 

Equation 4:     𝐷𝑂𝐴𝑒𝑟𝑟𝑜𝑟 =  √(
𝑘2

𝑆𝑁𝑅⁄ )2+(𝑘3 + 𝑘4 ∙ 𝑠𝑖𝑛(𝜙))2 606 

where, k₂, k₃, and k₄ are constants chosen to produce a DOA error consistent with the range 607 

described above. 608 

 609 

To evaluate the impact of the assumption that bats can distinguish between echoes caused by their 610 

own calls and those caused by other bats (i.e., conspecifics' reflectors), we tested an alternative 611 

model in which the simulated bats treat all echoes reflected from walls as if they have originated 612 

from their own calls The distance to reflectors of conspecifics' calls is estimated based on the time 613 

difference between the echo and the bat’s last call. The direction of arrival is estimated by the 614 

angle between the bat and the physical reflector, with an added random error (the same process 615 

used for their own echoes).  616 

In real bats, spatial processing in the brain involves integrating auditory and spatial information 617 

over time to construct a coherent map of the environment 5,68. This neural computation is crucial 618 

for navigation and prey detection in complex environments. To examine whether spatial 619 

integration mitigates the confusion problem, we added a ‘multi-call clustering’ module that was 620 

based on the sensory information obtained within a one-second memory window. The clustering 621 

comprised the following steps: (i) clustering all detections in memory into groups with a maximum 622 

internal distance of 10 cm; (ii) reconstructing the estimated walls positions and directions based 623 

on the average of clusters that include at least two detections (rather than relying on single 624 

reflections); and (iii) identifying openings between reconstructed wall edges ranging from 0.5 to 625 

2.25 meters in width, see Supplementary Figure 1 and Supplementary Figure 2B. The model 626 
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assumes that bats store echo locations in an allocentric x-y coordinate system, transforming 627 

detections from a local to a global spatial framework. Collision avoidance is based not only on the 628 

integrated spatial representation but also on immediate echoes from the last call (prior to 629 

clustering), including potential uncorrected false detections and localization errors, which are 630 

independently processed for real-time evasive maneuvers.   631 

Statistical analysis 632 

Statistical analysis and the roost-exit model were conducted using MATLAB© 2023a.  633 

Tests were performed with a significance level of 0.05. For each simulated scenario, we examined 634 

the effect of the various parameters on exit probability, time-to-exit, collision rate, and the 635 

jamming probability, using Generalized Linear Models (GLMs). The GLM tests were executed 636 

with MATLAB built-in function ‘fitglm()’. Probability variables (such as exit and jamming 637 

probabilities) were treated as binomially distributed; rate variables (such as collision rate) were 638 

treated as Poisson distributed, and all other variables were considered normally distributed. Unless 639 

otherwise stated, all explaining variables were set as fixed factors. All statistical analyses, 640 

including the statistical test and the corresponding sample sizes, are described throughout the text 641 

and summarized in Table 1. Standard errors are calculated across all individuals within each 642 

scenario, without distinguishing between different simulation trials. 643 

Data availability 644 

All data and codes generated during this study are included in the manuscript and supporting files. 645 

Source code files have been uploaded with a Graphical User Interface and a readme file for 646 

explanation. Data are available at zenodo and github: 647 

https://zenodo.org/records/16992617 (link) 648 

https://github.com/omermazar/Colony-Exit-Bat-Simulation/tree/main (link) 649 

 650 

 651 

 652 

 653 

 654 
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Supplementary 656 

Supplementary Movie 1  657 

 link  658 

 659 

Supplementary Figure 1: Decision-making in echolocation-based pathfinding 660 

  661 
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This diagram illustrates the sensorimotor decision-making process based solely on echolocation. 662 

The process starts with the emission of an echolocation call (1) and the reception of echoes and 663 

interfering signals (2), followed by sensory processing for detection, range estimation, and 664 

direction of arrival (DOA) (3). After integrating detections over a 1–10 call window (4), the bat 665 

engages in crash avoidance (5) by evaluating the proximity of conspecifics and obstacles directly 666 

ahead. If either is too close, the bat turns in the opposite direction of the detected obstacle, by 667 

applying maximum angular velocity away from it (e.g., if the obstacle is on the right, the bat turns 668 

left). If no immediate threat is detected, the bat proceeds to pathfinding (6). During pathfinding, 669 

it checks for obstacles and, if an opening is detected, flies toward the gap's center. Without the 670 

optional multi-call clustering process (green), the bat simply integrates detections and flies 671 

toward the farthest detected obstacle, interpreting it as a wall edge. If the multi-call clustering is 672 

included (9), a one-second short memory aids in clustering detections, estimating wall edges, and 673 

identifying openings, while also allowing the bat to follow walls at a constant distance. 674 

Throughout, the bat continuously adjusts echolocation parameters (8) and controls flight direction 675 

and velocity (7) based on ongoing sensory information and decision-making.  676 

 677 
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Supplementary Figure 2A:  Multi-Call Integration 678 

 679 

This figure demonstrates the effect of multi-call integration under non-confusing conditions. The 680 

upper-right panel shows the position of the focal bat (black) and nine conspecifics (red) within the 681 

roost corridor, with a zoomed-in view of the gray rectangle provided in Panels A–C. 682 

(A) When the integration window is set to zero calls (no memory), the bat relies solely on the latest 683 

call. Green circles and squares represent detected reflectors, while red Xs indicate missed 684 

(jammed) detections. Notably, the left wall of the corridor remains undetected due to jamming. 685 

(B, C) Increasing the integration window to five calls (magenta squares) and ten calls (black 686 

squares) accumulates detections from prior calls, improving coverage of the environment. In this 687 

basic integration model, each detection is treated independently, without clustering. 688 
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(D1, D2) Magnified views of the grey regions indicated in Panel C, comparing detections across 689 

0, 5, and 10-call windows (green, magenta, and black, respectively), illustrating how extended 690 

memory improves detection robustness. Note that the X-Y aspect ratios in D1 and D2 differ from 691 

the main panels to enhance visibility of spatial distributions. 692 

 693 

Supplementary Figure 2B:  Multi-Call Clustering Example 694 

 695 
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This figure illustrates the multi-call clustering algorithm under full-confusion conditions. (A) A 696 

focal bat (black) and four conspecifics (red) are shown in the lower corridor. (B) A zoom-in of the 697 

gray rectangle in (A). Black ovals represent detections from the last call; red X’s indicate jammed 698 

echoes; black squares represent all detections stored across the integration window (before 699 

clustering), each subject to localization error. When not applying multi-call clustering – the bat 700 

would rely on all of these dots as reflectors. Under full confusion, the bat cannot distinguish self-701 

echoes from conspecific echoes, leading to false detections (red diamonds). Detections are 702 

clustered when a reflector is detected twice or more within a 10 cm radius (green squares). The 703 

clustered reflectors are used to estimate wall directions (blue dashed line) and detect possible gaps 704 

(not shown). As a result of to the multi-call clustering algorithm, most false detections are removed 705 

as outliers, except for one erroneous cluster (Panel A). Collision avoidance maneuvers are based 706 

on both the clustered obstacles and the raw detections from the latest call (empty black ovals). 707 

 708 
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Supplementary Figure 3: Sensitivity of exit performance to obstacle target strength  709 

 710 

 711 

This figure shows how changes in the acoustic target strength of the cave walls affect navigation 712 

performance across five bat densities (1, 5, 10, 40, and 100 bats/3 m²). Target strength values 713 

ranged from –33 dB to –3 dB, corresponding to spherical reflectors with approximate radii from 714 

0.05 m to 1.5 m. Overall, increasing obstacle target strength significantly influenced exit 715 

performance, primarily by reducing the probability of obstacle jamming and thereby improving 716 

detection. (A) Exit Probability increased with obstacle target strength across all densities, with a 717 

maximal increase of 64% for a density of 100 bats (p << 10⁻¹⁰, t = 28.5, DF = 8157, GLM). (B) 718 

Time to Exit decreased significantlywith increasing obstacle target strength, with a maximal 719 

reduction of approximately 2.8 seconds at a density of 10 bats (p << 10⁻¹⁰, t = –22.2, DF = 6920, 720 
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GLM) . (C)   Conspecific Collision Rate increased slightly with stronger obstacle echoes (p << 721 

10⁻¹⁰, t = 27.6, DF = 8157, GLM). (D) Obstacle Collision Rate decreased significantly with 722 

increasing target strength (p << 10⁻¹⁰, t = –10.7, DF = 8157, GLM), reflecting better detection of 723 

walls and structures. (E) Obstacle Jamming Probability decreased consistently (p << 10⁻¹⁰, t = 724 

–19.8, DF = 8157, GLM). (F) Conspecific Jamming Probability increased with obstacle target 725 

strength (p << 10⁻¹⁰, t = 27.6, DF = 8157, GLM). 726 

These results suggest that stronger wall echoes improve environmental awareness at the cost of 727 

slightly increased masking of conspecific echoes. Despite this, the overall performance—728 

particularly exit probability and reduced obstacle collisions—improves significantly. 729 

In all panels, circles represent means and bars represent standard errors. The error bars are 730 

present but very small due to the large number of simulation repetitions, and thus may not be 731 

visually noticeable at the plotted scale. See Table 1 for the number of simulated bats.  732 

 733 

  734 
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Supplementary Figure 4: Sensitivity of exit performance to conspecific’s target strength  735 

 736 

This figure shows how changes in the acoustic target strength of conspecifics affect navigation 737 

performance across four bat densities (1, 5, 10, and 40 bats/3 m²). Overall, our results indicate that 738 

target strength has a relatively minor impact on performance, likely because it affects both desired 739 

echo signals and masking signals equally. Interestingly, this analysis also suggests that our model 740 

is more sensitive to the bat’s response to nearby conspecifics than to the physical collision impact 741 

itself. (A) Exit probability was not significantly affected by conspecific target strength (p=0.28, 742 

t=-1.09, DF=5757, GLM, see details in Table 1). Note that the performance curves for densities of 743 

1 and 5 bats overlap almost completely. (B) Time-to-exit increased with target strength at high 744 

density, with a maximal effect size of ~1 second at 40 bats (p = 0.003, t = 3.02, DF = 5578). (C, 745 

D) Collision rates with conspecifics decreased significantly with stronger target strength (p = 746 
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0.0002, t = –3.7, DF = 5757), while collisions with obstacles remained statistically unchanged (p 747 

= 0.23, t = 1.18, DF = 5757). (E, F) Jamming probability was not significantly affected for either 748 

conspecific or obstacle echoes (p = 0.6, t = –0.51, DF = 4762; p = 0.19, t = 1.31, DF = 5757, 749 

respectively). This aligns with the notion that both useful and interfering signals scale similarly 750 

with target strength. Importantly, the probability of detecting a conspecific located within 1 meter 751 

increased substantially with higher target strength, improving from 25% to 43% at 40 bats (p < 752 

10⁻¹⁰, t = 6.45, DF = 4162). 753 

In all panels, circles represent means and bars represent standard errors. The error bars are present 754 

but very small due to the large number of simulation repetitions, and thus may not be visually 755 

noticeable at the plotted scale. See Table 1 for the number of simulated bats.  756 

 757 

 758 

Supplementary Figure 5: Angles and distances for two bats and two reflecting objects. 759 

 760 

 761 

Bat1 receives a reflected echo from Prey1 or a stationary obstacle located at a distance of D from 762 

it, with an angle  ϕtarget relative to its flight direction (red arrow 1).  Prey1 is also within the 763 
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detection range of Bat1, depicted by the green shaded piston area. Bat1 also receives masking 764 

sounds from Bat2.  The echolocation signals emitted by Bat2 arrive at the ear of Bat1 at an angle 765 

ϕtxrx
 relative to its flight direction and from a distance of Dtxrx

 (red arrow 2). Additionally, the 766 

echolocation signals of Bat2 are reflected by Prey2, before being received by Bat 1. These reflected 767 

signals act as masking signals at a relative angle of angle ϕrx
, and from a distance of Drx from 768 

Bat1. 769 

 770 

 771 
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