

1 How bats exit a crowded colony when relying on echolocation only -
2 a modeling approach

3 Omer Mazar¹, Yossi Yovel^{1,2}

4 ¹Tel Aviv University, Sagol School of Neuroscience, Tel-Aviv 6997801, Israel.

5 ²Tel Aviv University, Faculty of Life Sciences, School of Zoology, Tel-Aviv 6997801, Israel.

7 **Author Contributions:** O.M - Software, Formal analysis, Data acquisition, Validation,
8 Visualization, Methodology, Writing - original draft, Writing - review and editing. Y.Y -
9 Conceptualization, Resources, Supervision, Funding acquisition, Validation, Investigation,
10 Methodology, Project administration, Writing - review and editing

13 Abstract

14 Bats face a complex navigation challenge when emerging from densely populated roosts, where
15 vast numbers take off at once in dark, confined spaces. Each bat must avoid collisions with walls
16 and conspecifics while locating the exit, all amidst overlapping acoustic signals. This crowded
17 environment creates the risk of acoustic jamming, in which the calls of neighboring bats interfere
18 with echo detection, potentially obscuring vital information. Despite these challenges, bats
19 navigate these conditions with remarkable success. Although bats have access to multiple sensory
20 cues, here we focused on whether echolocation alone could provide sufficient information for
21 orientation under such high-interference conditions. To explore whether and how they manage this
22 challenge, we developed a sensorimotor model that mimics the bats' echolocation behavior under
23 high-density conditions. Our model suggests that the problem of acoustic jamming may be less
24 severe than previously assumed. Frequent calls with short inter-pulse intervals (IPI) increase the
25 sensory input flow, allowing integration of echoic information across multiple calls. When
26 combined with simple movement-guidance strategies—such as following walls and avoiding
27 nearby obstacles—this accumulated information enables effective navigation in dense acoustic
28 environments. Together, these findings demonstrate a plausible mechanism by which bats may
29 overcome acoustic interference and underscore the role of signal redundancy in supporting robust
30 echolocation-based navigation. Beyond advancing our understanding of bat behavior, they also
31 offer valuable insights for swarm robotics and collective movement in complex environments.

32

33 [Introduction](#)

34 In many bat species individuals dwell together in caves (or similar roosts), forming large colonies
35 with tens to several millions of individuals^{1,2}. Each evening, at approximately the same time, the
36 bats take off from their roost, navigating through its passages toward the exit. The high density of
37 bats flying simultaneously in great proximity poses many challenges for orientation in such a
38 crowded and noisy environment. Flying while avoiding collisions, often in a pitch-black cave,
39 demands the continuous detection and localization of both obstacles and nearby bats^{3,4}. Employing
40 echolocation, bats emit strong ultrasonic signals and interpret the reflected echoes to perceive their
41 surroundings⁵. The reception of neighbors' loud calls, which share similar acoustic features with
42 their own calls, can potentially hinder the bats' ability to detect the faint echoes reflected off the
43 walls and the surrounding bats^{5,6}. We examined whether bats could rely solely on echolocation to
44 exit the roost even during such a chaotic 'rush hour'.

45 The question of how bats cope with acoustic interference — i.e., the masking of potential echoes
46 by conspecific signals — has been extensively researched using playback experiments, field
47 observations, on-body tags, and computational simulations^{7–17}. However, much of this research
48 has focused on foraging bats in small groups^{5,6,9,16,18–20}. The challenges bats encounter during roost
49 exits (e.g., cave exits) differ markedly from those encountered during group foraging. Bat density
50 during roost exits is significantly higher, and bats need to detect and follow static walls or
51 obstacles, which produce loud echoes, rather than small, sporadic prey items that generate faint
52 echoes²¹. Their flight during exits is also more directional and involves avoiding collisions with
53 conspecifics, in contrast to the erratic hunting maneuvers typically observed while foraging.
54 Echolocation studies during dense collective movement are scarce^{4,6,22–25}, likely due to the
55 complexities in recording separate echolocation calls and tracking individual flights within the
56 swarm.

57 While collective movement has been extensively studied in various species, such as insect
58 swarming, fish schooling, and bird murmuration^{26–32}, as well as in swarm robotics, where agents
59 perform tasks such as coordinated navigation and maze-solving^{33–35}, most studies have focused
60 on movement algorithms that assume full detection of neighbors^{36–43}. Some models have
61 incorporated limited interaction rules where individuals respond to only one or a few neighbors

62 due to sensory constraints^{44,45} However, fewer studies have explicitly examined how sensory
63 interference, occlusion, and noise influence decision-making and affect collective movement⁴⁶.
64 The present study addresses these gaps by introducing an agent-based sensorimotor model based
65 on the well-documented echolocation capabilities of bats, simulating multiple bats pathfinding
66 their way out of a cave-like structure. We modeled the echolocation behavior of two insectivorous
67 bat species: *Pipistrellus kuhlii* (PK), which roosts in abandoned buildings and frequently navigates
68 through conspecific-dense, cluttered corridors and the cave dwelling *Rhinopoma microphyllum*
69 (RM) which emerges from its roosts with thousands of individuals simultaneously. These two
70 species differ in their echolocation signals - PK echolocation signals are characterized by a wider
71 bandwidth and a higher terminal frequency than RM calls. We quantified the performance of an
72 individual bat flying among conspecifics, demonstrating that even a relatively simple sensorimotor
73 algorithm can facilitate successful orientation in such complex environments. The modeling
74 approach enabled us to explore how various biological and ecological factors influence
75 successful navigation under such challenging conditions.

76

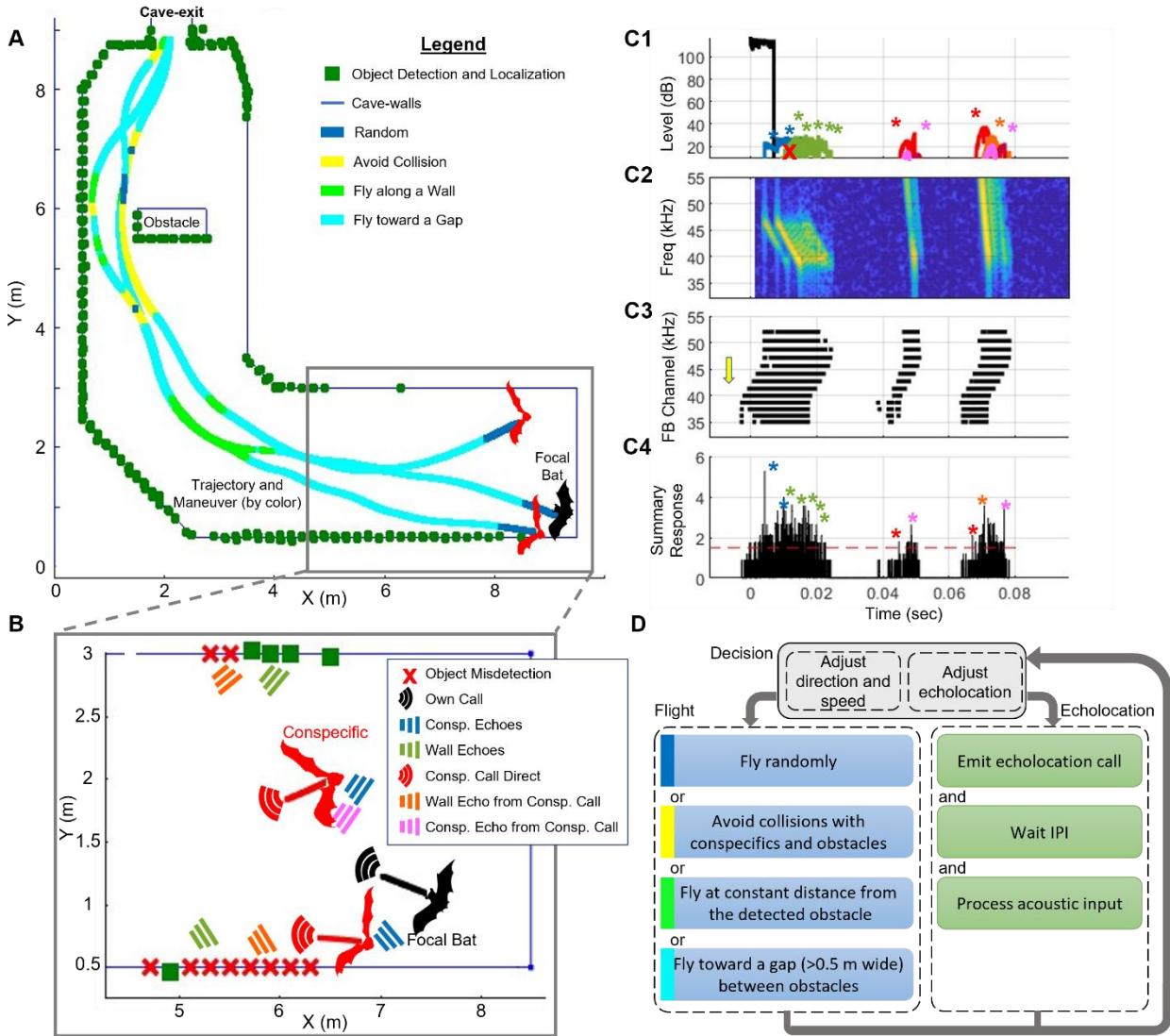
77 [Results](#)

78 Our model was designed with conservative assumptions regarding bats' sensing, movement, and
79 sensorimotor integration, aiming to underestimate their capabilities and thereby establish a lower
80 bound on their actual performance. Real bats likely outperform the model's predictions. In our 2D
81 simulations⁷, each bat emits sound signals and receives echoes reflected from the roost walls and
82 other bats, while also encountering masking signals caused by calls from conspecifics. These
83 masking signals can interfere and completely eliminate echo detection (which we refer to as
84 jamming) or cause echo localization errors. After estimating the distance and direction of each
85 detected reflector, the bat adjusts its echolocation parameters and maneuvers to find the exit while
86 simultaneously avoiding collisions. The bats dynamically adjust their echolocation parameters—
87 including call rate, duration, and frequency range—based on the estimated distance to obstacles,
88 following the well-documented transition between search, approach, and buzz phases observed in
89 echolocating bats (see⁷ and Methods). Their reception was modeled using a biologically inspired
90 filter-bank receiver comprising 80 gammatone channels^{7,47,48}. Each bat adjusted its flight following
91 a simple pathfinding algorithm based solely on the estimated locations of the detected reflectors

92 (see Methods, Supplementary Figure 1, and Supplementary Movie 1 for additional details). The
93 bats had to exit a roost designed as a corridor (14.5 m long x 2.5 m wide), with a right-angle turn
94 located 5.5 m before the exit (Figure 1A). Additionally, an obstacle (1.25 m wide) was situated
95 2.25 m in front of the opening. The simulated bats initiated their flight from the far end of the
96 corridor, within a randomly selected $1.5 \times 2 \text{ m}^2$ area, taking off in the general direction of the exit
97 (± 30 degrees), without prior knowledge of the roost's structure.

98 The sensory model accounted for six types of acoustic signals: (1) the bat's own calls, (2) echoes
99 from conspecifics, (3) echoes from walls in response to the bat's own calls (i.e., desired wall
100 echoes), (4) echoes from conspecific calls reflected off other bats, (5) echoes from conspecific
101 calls reflected off walls, and (6) the conspecific calls themselves. In the baseline model, bats were
102 assumed to reliably distinguish between all these signal types. In contrast, the confusion model
103 described below specifically tested the impact of failing to distinguish between desired wall echoes
104 (3) and wall echoes generated by conspecific calls (5), while preserving the bat's ability to identify
105 all other signal types. In brief, the bat responded to echoes as follows (see Methods and
106 Supplementary Figure 1 for details): If an obstacle or a conspecific was detected in front of the bat
107 and was too close, the bat would maneuver to avoid a collision. Otherwise, for exit-seeking, the
108 bat would follow the contour of the walls by steering toward the farthest detected obstacle ahead.
109 If a gap greater than 0.5 m was identified between adjacent reflectors, the bat directed its trajectory
110 toward the center of the gap.

111 The ability of the bats to exit the roost within 15 sec was evaluated for different group sizes, from
112 a single bat and up to 100 individuals. For simplicity, we will refer to the initial density at the
113 cave's far end as the number of bats per 3m^2 (i.e., for groups of 100 bats, the density is 100
114 bats/ 3m^2 , or 33.3 bats/ m^2). The bat densities we tested were chosen to reflect the typical range of
115 bat densities observed in natural caves during emergence events^{25,49,50}. Key model parameters,
116 such as the sensory integration window, object target strength, echolocation parameters, and flight
117 velocity (see Table 1), were manipulated and their impact on the exit performance was analyzed.
118 To explicitly quantify the effect of sensory masking vs. the effect of collision avoidance (i.e.,
119 spatial interference) only, we turned the acoustic interference on and off to measure its impact.
120 Each scenario was repeated as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12;
121 40 bats: 12; 100 bats: 6 (see Table 1), while misidentification rate, multi-call clustering, and
122 wall/conspecific target strength were tested only up to 40 bats (see Table 1).



123

124 **Figure 1: The sensorimotor model.** (A) Top view of the cave with three bats' trajectories. The focal bat is
 125 shown in black. All bats' flight trajectories are displayed while the bats' moment-to-moment decisions are
 126 represented by the colored lines: blue - random flight, yellow – collision avoidance, light green – wall-
 127 following, turquoise – movement toward a wall gap (see panel D for details). Green squares depict reflectors
 128 detected by the focal bat along its route. (B) A zoomed-in view of the marked rectangular area in Panel A,
 129 where the focal bat (black) emitted one echolocation call (black) and received echoes from the cave walls
 130 (green) and from two other bats (blue). It also received conspecifics' calls (red) and their reflection from the
 131 cave walls (orange), as well as the reflections from other bats (pink). Green squares indicate points that were
 132 detected by the focal bat from this call and red x's indicate missed points due to acoustic masking (i.e.,
 133 jammed reflectors). The locations of the detected reflectors (green squares) are marked according to their
 134 localization by the bat (with simulated errors). The lines near the bats depict their flight direction. (C) The
 135 acoustic scene received by the focal bat is as depicted in B, including the emitted call and all received signals
 136 (colors as in panel B). (C1) The time-domain plot displays the envelope of signals, encompassing the emitted
 137 call and the received signals: the desired echoes from the walls and conspecifics; the calls of other bats; the
 138 echoes returning from conspecific calls and reflected off the walls and off other bats. Notably, in this example,
 139 some of the desired wall-echoes are jammed by stronger self-echoes reflected from nearby conspecifics. (C2)

140 The spectrogram of all the received signals presented in C1; for clarity, the emitted call is not depicted. **(C3)**
141 The responses of the active channels of the cochlear filter bank (FB channel) after de-chirping. Each channel
142 is represented by its central frequency on the y-axis. Each black dot represents the timing of a reaction that
143 was above the detection threshold in each channel. Note that early reactions in low-frequency channels
144 (marked by a yellow arrow) result from the stimulation of those channels caused by the higher frequencies
145 of the downward FM chirp. However, most of these stimulations do not reach the detection threshold and are
146 therefore not detected (see Methods). **(C4)** The detections of each channel are convolved with a Gaussian
147 kernel, summed, and compared with the detection threshold (dotted red line). Colored asterisks mark peaks
148 that were classified as **successful detections**—those identified in both the interference-free and full detection
149 conditions (see Methods for details). Other peaks may originate from masking signals or overlapping echoes
150 that did not meet the detection criteria (colors of the sources are as defined above). **Panel D** depicts the
151 pathfinding algorithm used by the bat. The algorithm involves a correlated-random flight during the search
152 phase (blue), collision avoidance (yellow), flying along the wall at a constant distance (green), and flying
153 toward the center of a gap between obstacles as an indicator of a possible exit (cyan). After each echolocation
154 call, the bat awaits an IPI (Inter Pulse Interval) period before processing the detections, adjusting flight and
155 echolocation parameters, and emitting the next call. Based on the received signals, it then modifies its next
156 call design and adjusts its direction and speed accordingly. For a detailed diagram of the complete
157 sensorimotor process see Supplementary Figure 1.

158

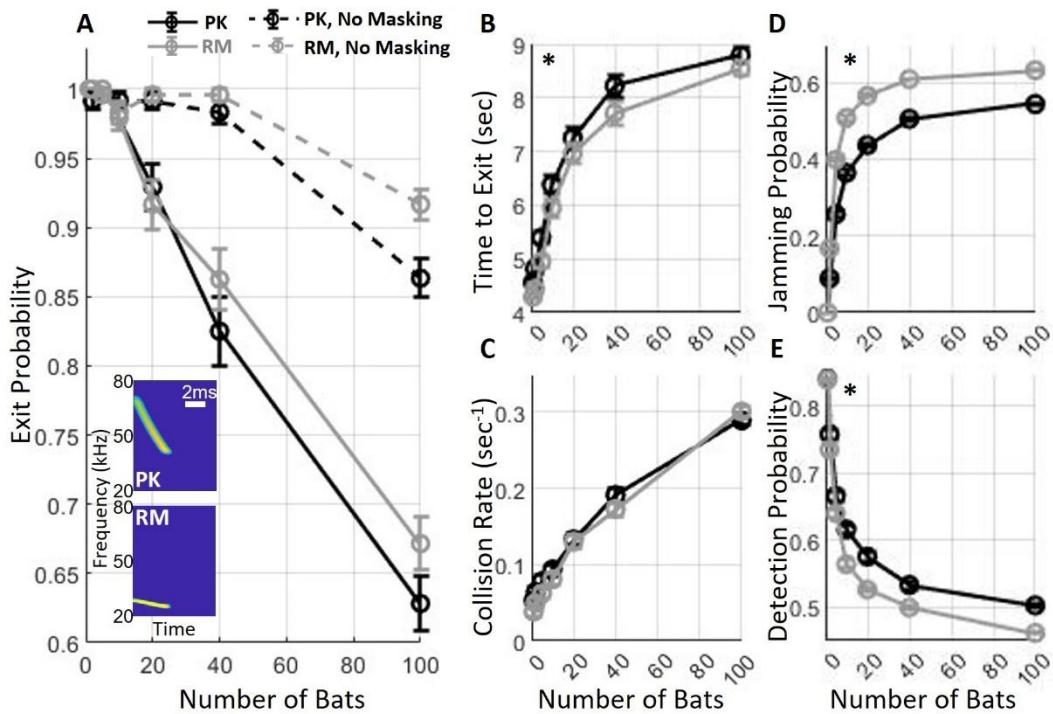
159 ***Bats find their way out of the cave even at high conspecific densities:***

160 We first examined how bat density affects bats' ability to exit the cave, both alone and in a group.
161 The probability of exiting the cave within 15 seconds—defined as the proportion of bats that
162 successfully exited within this time frame—was significantly reduced at higher densities (Figure
163 2A, see Supplementary Movie 1 for a view of the bats' movement, $p < 10^{-10}$, $t = -23$, $DF = 4077$,
164 GLM, see details in Table 1). In trials in which a single bat was flying alone, it successfully exited
165 the cave in 100% of the cases. Even without sensory interference, the probability of exiting
166 decreased significantly from 100% to $86\% \pm 1.4\%$ and $91\% \pm 1.7\%$ at densities of $100 \text{ PKs}/3\text{m}^2$ and
167 $100 \text{ RMs}/3\text{m}^2$, respectively (mean \pm s.e.). When acoustic interference was added, the exit
168 probability further decreased to $63\% \pm 1.4\%$ and $67\% \pm 1.4\%$ for 100 PKs and RMs, respectively
169 (see Figure 2A).

170 The difference in exit probability between the two species was not significant ($p = 0.08$, $t = 1.74$,
171 $DF = 4077$, GLM as above, Figure 2A). Similarly, the difference in echolocation parameters
172 between the two species did not affect the collision rate with the walls (with a maximum of 0.29
173 and 0.3 collisions per bat per second for PK and RM, respectively, with 100 bats ($p = 0.63$, $t = -0.48$,
174 $DF = 4077$, GLM, Figure 2C, see details in Table 1). To quantify sensory interference, we defined
175 a jammed echo as an echo entirely missed due to masking. The jamming probability, which was

176 calculated as the number of jammed echoes divided by the total number of self-echoes, was
177 significantly higher for RM compared to PK. The maximum difference between the two models
178 was 14.3% at a density of 10 bats, with a smaller difference of 9.8% observed at 100 bats ($p < 10^{-10}$, $t = 6.56$, $DF = 4077$, GLM, Figure 2D, see details in Table 1). Accordingly, PK demonstrated a
179 minor but significant advantage in detecting the cave walls ($p = 0.024$, $t = -2.25$, $DF = 4077$, GLM,
180 Figure 2E, see details in Table 1). With 100 bats flying together, the probability of detecting a wall
181 echo at a distance of 1 m in a single call was around 50% and 46% for PK and RM, respectively.
182 Despite this minor disadvantage in detection, RM bats exhibited a better time-to-exit average than
183 PK bats, being 0.5 seconds faster to exit ($p = 0.0005$, $t = -4.06$, $DF = 3533$, for $n = 40$ bats, Figure 2B).
184 Additionally, RM bats experienced a significantly higher probability of their self-generated
185 echoes, reflected off conspecifics, being jammed ($p = 0.00016$, $t = 3.8$, $DF = 3593$, GLM; see
186 details in Table 1).

188



189

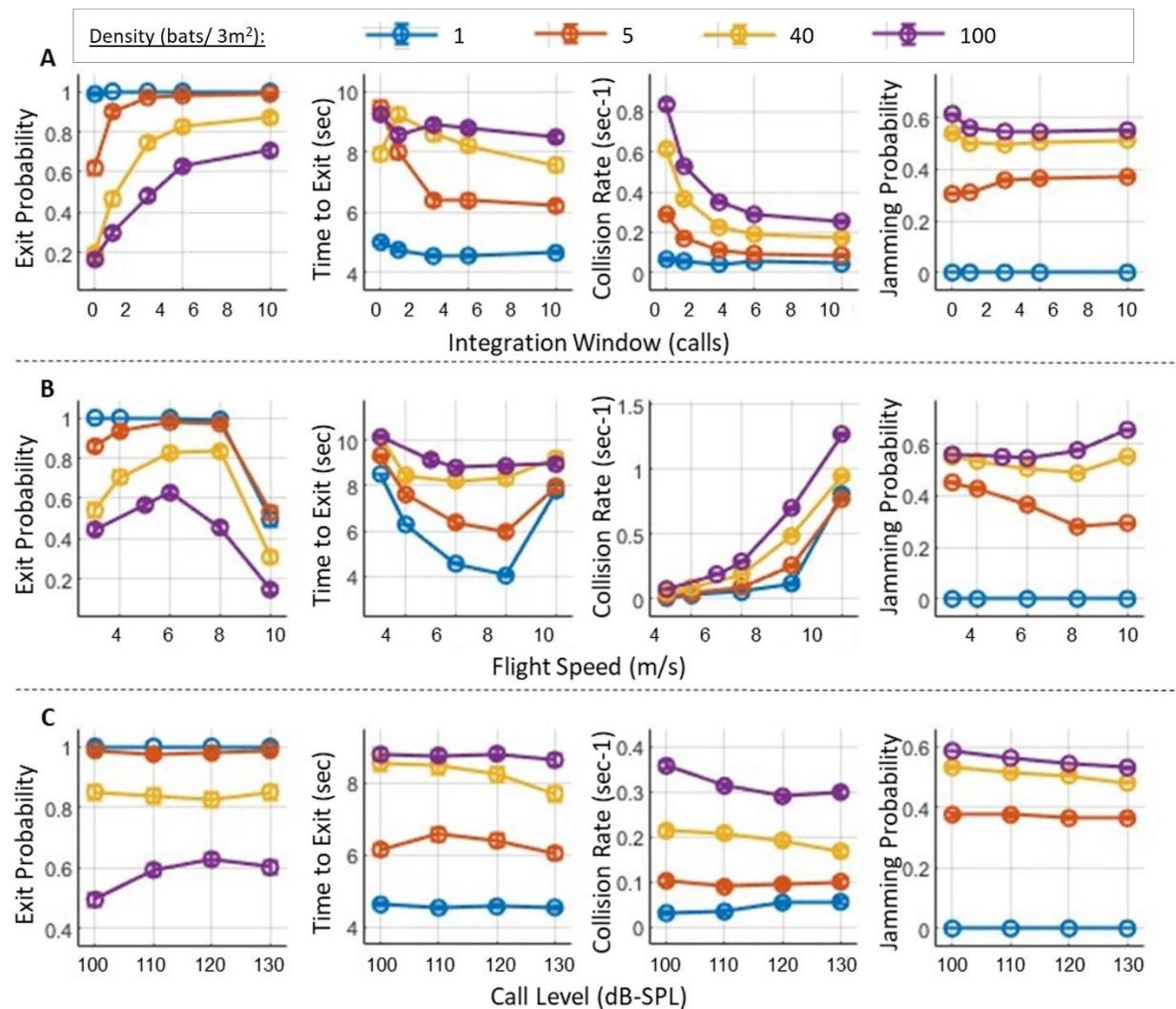
190 **Figure 2: Exit performance of *P. Kuhlii* (PK) and *R. Microphyllus* (RM).** (A) Sensory interference
191 significantly impaired the probability of exiting the cave (compare dashed lines with continuous lines). The
192 probability of a successful exit also declined as the number of bats increased, with no significant difference
193 observed between the species when masking interference was applied. The insert shows the spectrograms of the
194 echolocation calls of PK (top) and RM (bottom). (B) The time-to-exit, which was calculated for successful trials

195 only, and **(C)** the collision rate with the walls both increased as a function of the number of bats. **(D)** The
196 probability of jamming significantly increased to about 55% and 63% with 100 bats for PK and RM, respectively.
197 **(E)** The detection probability of a wall reflector at one meter or less in front of a bat decreased as a function of
198 the number of bats. In panels (A-E), circles represent means and bars represent standard errors (see details in
199 Table 1). Asterisks indicate significant differences between the lines in each panel.

200 ***Multi-call integration improves exit performance:*** We next examined whether bats improve their
201 performance when integrating information from several consecutive calls. The integration window
202 determines the number of previous calls the bat uses at each step to guide its next movement
203 decision (see Methods and Supplementary Figure 2A). In the basic multi-call integration model,
204 detections from the previous calls — by default the last five — were stored in an allocentric (x-y)
205 reference frame, with each detection treated independently as a potential obstacle without
206 clustering or filtering. At each decision, the bat takes all of these detections into account when
207 guiding its movement and echolocation. The probability of exiting the roost significantly increased
208 when increasing the size of the integration window for all bat densities ($p<10^{-10}$, $t = 28.5$,
209 $DF=10197$, GLM, Figure 3A, see details in Table 1). For example, at a density of 40 bats/3m², the
210 exit probability improved from 20%, to 75%, and to 87% as the window size increased from one,
211 to three, and to 10 previous calls, respectively. In addition, increasing the window size resulted in
212 a significant improvement in the time-to-exit and the avoidance of wall collisions ($p<10^{-10}$, $t =$
213 12.8, $DF=7661$; $p<10^{-10}$, $t = -46.5$, $DF=10197$, respectively, GLM, see details in Table 1). With
214 100 bats, the collision rate decreased by a factor of 2 from 0.53 to 0.25 collisions per second as the
215 window increased from 1 to 10 calls. The size of the integration window had no significant effect
216 on the jamming probability ($p=0.37$, $t = 0.9$, $DF=10197$, GLM, see details in Table 1).

217 ***Exit probability was maximal at an intermediate flight-speed:*** We observed a significant and non-
218 linear effect of the flight speed of the bats on the performance, as shown in **Figure 1**Figure 3B
219 ($p<10^{-10}$, $t = -29.9$, $DF=10196$, GLM, see details in Table 1). The exit probability increased with
220 flight speed until it reached a maximum at 6-8 m/s and then declined rapidly. This was the case
221 for all bat densities, with the maximal exit probability ranging between 65% to 99%. At the optimal
222 velocity, the time-to-exit was also minimal. However, the collision rate increased monotonically
223 with speed, with a steep incline above the optimal speed.

224



225

226 **Figure 3: Exit performance as a function of key sensorimotor parameters.** (A) The effect of the
227 integration window on the probability of exiting the roost, the time-to-exit, the rate of collisions with the
228 walls, and the probability of jamming (from left to right, respectively). Each colored line shows the trend as
229 a function of the window-size for different bat densities, with each color representing a specific density. Note
230 that a window size of 0 indicates that only the most recent call is used in the bat's decision-making, without
231 integrating detections from previous calls. (B) The effect of the nominal flight speed of the bats, with panels
232 and line-colors as in panel A. An optimal speed of approximately 6 to 8 m/sec can be observed for all densities
233 above one bat. (C) The effect of call intensity on exit performance, panels as in (A). In all panels, circles
234 represent means and bars represent standard errors. Error bars depicting standard errors are presented but are
235 very small due to the large number of simulation repetitions. See Table 1 for the number of simulated bats.

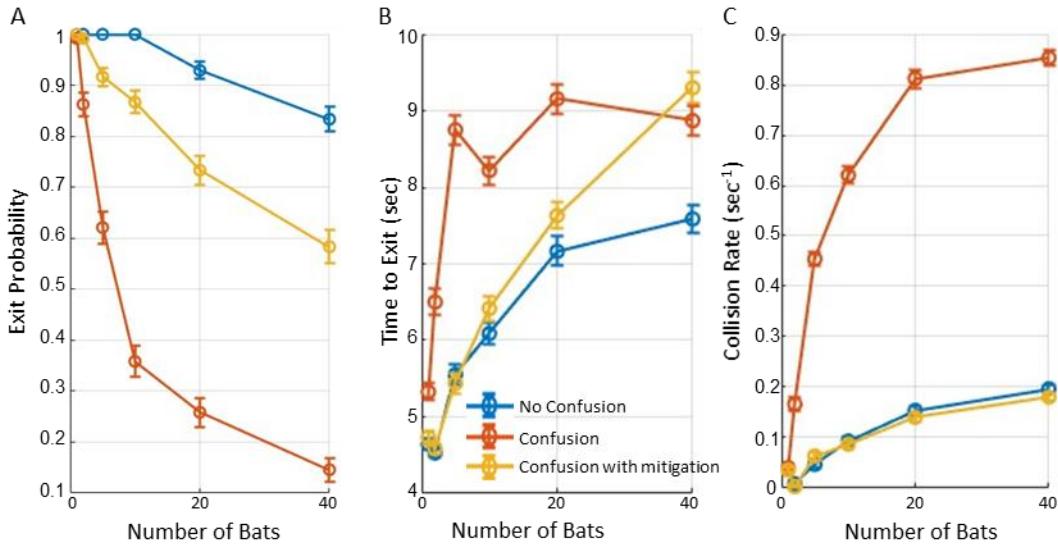
236 **Call intensity had only a minor effect on exit performance and only at high bat densities:** For
237 low bat densities (<40 bats), call intensity did not have a significant impact on either exit
238 probability or collision rate (Figure 3C, $p=0.89$, $t=0.13$, $DF=5757$; $p=82$, $t=-0.21$, $DF=5757$,
239 respectively, GLM, see details in Table 1). Call intensity affected exit performance only when the

240 intensity dropped to 100 dB-SPL (@ 0.1m) and only at a high bat density of 100 bats/3m² (Figure
241 3**Figure 3 C**). In this scenario, the exit probability declined from approximately 60% to 49.5%
242 ($p=0.003$, $F = 8.45$, $DF = 2396$, One-way ANOVA with 'hsd' post hoc test), and the collision rate
243 increased from 0.3 to 0.35 collisions per second ($p<3 \cdot 10^{-6}$, $F = 22.18$, $DF = 2396$). Notably, this
244 low intensity is below the typical search-call intensity of most echolocating bats. At the same bat
245 density (100 bats/3m²), further increasing the call intensity to above 100dB-SPL had no significant
246 effect on either exit probability ($p=0.6$) or collision rate ($p=0.07$). Calling louder also slightly, but
247 significantly, decreased the jamming probability at all bat densities, with a decrease of $3.5\% \pm 8\%$
248 to $5.5\% \pm 5\%$ (mean \pm s.e.) ($p=0.02$, $t = -2.26$, $DF=8157$, GLM, see Table 1).

249 ***While confusion between the desired echoes and those from conspecific calls may significantly***
250 ***impair exit performance, multi-call clustering helps to mitigate this.*** We next addressed the
251 challenge of echo classification, assuming that a bat can differentiate an echo resulting from its
252 own calls from echoes resulting from the calls of other bats. To examine this assumption, we tested
253 another model, referred to as the **confusion model**, in which bats responded similarly both to wall
254 echoes returning from their own emissions and to those from conspecific emissions, treating all as
255 their own echoes. This confusion significantly decreased exit performance for all bat densities
256 (above one bat). The probability of a successful exit for a density of 40 bats/3m² dropped from
257 $83.3 \pm 2.4\%$ to $14.6 \pm 2.3\%$ ($p < < 10^{-10}$, $t = -20.7$, $DF=2877$, GLM, see details in Table 1), the exit time
258 increased from 7.6 ± 0.18 to 9.3 ± 0.2 seconds ($p < < 10^{-10}$, $t = 15.5$, $DF=2157$, GLM), and the collision
259 rate increased significantly from 0.2 ± 0.007 to 0.8 ± 0.013 collisions per second ($p < < 10^{-10}$, $t = -30$,
260 $DF=28777$, GLM, see Figure 4, red and yellow lines).

261 To further examine whether this substantial decrease in performance could be mitigated even
262 without improving echo identification, we tested an enhanced integration model that, in addition
263 to extending the number of calls integrated, clustered spatially close detections, removed outliers,
264 and estimated wall directions based on grouped reflectors (see Methods and Supplementary Figure
265 2B). This '**multi-call clustering**' significantly improved performance, but exit probability and
266 time-to-exit still remained significantly lower than without echo-confusion: exit probability =
267 $58 \pm 3\%$ in comparison to $83.3 \pm 2.4\%$ without echo confusion ($p < < 10^{-10}$, $t = 18.3$, $DF=28777$, GLM),
268 time-to-exit = 9.3 ± 0.2 seconds ($p < < 10^{-10}$, $t = -13.7$, $DF=1996$, GLM), see Figure 4, yellow line. The
269 results above are reported for a density of 40 bats/3m². Interestingly, the multi-call clustering

270 restored the collision rate to the levels observed under the "No Confusion" condition ($p=0.68$, $t=-$
271 0.42 , $DF= 2877$, GLM, see Figure 4C, dark-purple and red lines).



272

273 **Figure 4: The impact of confusion on performance.** The figure illustrates the impact of classification
274 confusion on roost-exit performance under various conditions. Blue lines depict trials with masking, while
275 assuming that bats can distinguish between echoes from their own calls and those of conspecifics (referred
276 to as "No Confusion"). Red lines depict performance where confusion between echoes is assumed. Yellow
277 lines depict performance under the confusion condition, with the added capability of multi-call clustering
278 in a short-term working memory (referred to as "confusion with mitigation", see text for further details). In
279 all panels, circles represent means and bars indicate standard errors. **(A)** The probability of exiting the roost
280 significantly decreased with masking and confusion. In conditions with confusion and no aggregation
281 process, only 15% of bats successfully exited the roost, at a density of 40 bats/3m². Multi-call clustering
282 partially mitigated the confusion effect but did not eliminate it. **(B)** Bats with the ability to distinguish
283 between echoes demonstrated significantly shorter exit times than those experiencing confusion. Note that
284 time-to-exit refers only to successful attempts. **(C)** The collision rate with walls was highest for bats
285 experiencing both masking and confusion but decreased significantly when without confusion. Multi-call
286 clustering restored performance to the "No Confusion" condition, reducing collision rates accordingly, at
287 densities between 1 to 40 bats/3m².

288

289 **Effect of Wall and Conspecific Target Strengths on Exit Performance:** Increasing the wall
290 target strength significantly enhanced navigation performance (Supplementary Figure 3, Table 1),
291 improving exit probability by up to 64% and reducing time-to-exit by up to 2.8 seconds ($p <<$
292 10^{-10}). Stronger wall echoes improved environmental awareness but also slightly increased
293 masking of desired conspecific signals.

294 In contrast, changes in conspecific target strength had a much smaller effect (Supplementary
 295 Figure 4, Table 1), with only minor improvements in detection and collision rates, and no
 296 significant impact on exit probability. This likely reflects the fact that both desired and masking
 297 signals scale similarly with conspecific reflectivity. Overall, the model showed low sensitivity to
 298 variations in conspecific target strength.

299

Key parameter	Tested range	Default value	Effect Size on Explained Variable				GLM Explaining factors
			Exit prob. (%)	Time-to-exit (sec)	Jamming-prob. (%)	Obs. Collision (sec ⁻¹)	
Number Of Bats ^Ω	[1, 2, 5, 10, 20, 40, 100]	All Values	-0.37/bat* [63:100]	0.044/bat * [4.6:8.9]	0.54/bat* [0:54]	0.25/bat* [0.05:0.3]	Number of bats
Bat species	[PK, RM]	PK	4.5 [63:67]	-0.4* [8.5:8.9]	9* [54:63]	0.01 [0.29:03].	Number of bats, bat species
Integration Window (#)	[0,1,3,5,10]	5	0.41/call* [29:70]	-0.16/call* [9.2:7.6]	0.01/call [54:55]	0.27/call [0.25:0.53]	Number of bats, integration window size
Nominal flight speed (m/s)	[2,4,6,8,10]	6	6/(1m/s), -12/(1m/s)* [15:63]	-1/(1m/s), 1/(1m/s)* [6:9.6]	1.4/(1m/s)* [55:65]	0.18/(1m/s)* [0.07:1.3]	Number of bats, flight speed, square of flight speed
Call level (dB-SPL, @ 0.1m)	[100,110,120, 130]	120	13 ^ψ [50:63]	-0.5 [7.9:8.4]	0.5/10dB* [53:58]	0.07 ^ψ [0.29:0.36]	Number of bats, call level
Misidentification ^Ω	[Yes/No]	N	-69* [14:83]	1.3* [7.6:8.9]	30* [50:80]	0.6* [0.2:0.8]	Number of bats, With and without confusion
Misidentification and multi-call clustering ^Ω	[Yes/No]	N	-23* [58:83]	1.7* [7.6:9.3]	29* [50:79]	-0.02* [0.18:0.2]	Number of bats, With and without multi-call clustering
Masking	[Yes/No]	Y	23* [63:86]	0.8* [8.0:8.8]	54* [0:54]	0.03 [0.26:0.29]	Number of bats, With and without masking
Wall target strength (dB) ^{α, Ω}	[-33, -23, -13, -3]	-23	16/10dB * [23:87]	0.7/10dB * [6.6:9.5]	-8.5/10dB * [34:68]	0.07/10dB * [0.19:0.47]	Number of bats, wall target strength
Conspecific target strength (dB) ^{β, Ω}	[-49, -43, -33, -23]	-23	-1.5/10dB [85:91]	0.25/10dB* [7.2:8.15]	-0.5/10dB [48:50]	0.1/10dB [0.16:0.2]	Number of bats, conspecific target strength

300 **Table 1: Key model parameters and their effects on performance metrics.** The table presents the key
 301 parameters tested, their ranges, default values, and effect sizes on various performance metrics: exit
 302 probability, time-to-exit, jamming probability, and collision rate with obstacles. The parameters comprised
 303 the number of bats, bat species (PK-*Pipistrellus kuhlii*, RM –*Rhinopoma microphyllum*), integration window,

304 nominal flight speed, call level, echo mis-identification with multi-call clustering (yes/no), masking (yes/no),
305 wall target strength, and conspecific target strength. In each scenario, all parameters except the tested one
306 were set to the default value. Call levels are reported in dB-SPL, referenced at 0.1 m from the source. Effect
307 sizes for each parameter are explicitly listed for all four-performance metrics, expressed as the change per
308 unit of the tested parameter (e.g., per bat or per 10 dB). For flight speed, a non-monotonic relationship was
309 observed, and values are reported both before and after the peak performance (see Results, Fig. 3B). Values
310 in square brackets indicate the minimum and maximum of the metric across the tested range. . Asterisk (*)
311 indicates a significant impact. Each scenario was tested using Generalized Linear Models (GLMs) with
312 number-of-bats and the tested parameters set as fixed explaining variables. Exit probability and jamming
313 probability were treated as binomially distributed, collision rate was treated as a Poisson distributed, and all
314 other variables were considered normally distributed. Explaining variables were set as fixed factors. The
315 number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120, 5 bats: 48; 10 bats: 24; 20
316 bats: 12; 40 bats: 12; 100 bats: 6. ^a Misidentification rate, multi-call clustering, wall target strength, and
317 conspecific target strength were simulated only up to 40 bats due to significantly longer run-times. [¶] A
318 significant difference in call intensity was found only for a bat density of 100 bats/3m², and between the
319 group with a level of 100dB-SPL and all other groups. ^a see Supplementary Figure 3. [¶] see Supplementary
320 Figure 4.

321

322 Discussion

323 We present a model-based approach that suggests how echolocating bats might find their way out
324 of a crowded roost while contending with severe sensory interference caused by numerous nearby
325 conspecifics. Our results demonstrate that a single bat, lacking prior knowledge of the roost's
326 structure, successfully found the exit in all simulated trials using echolocation alone. As bat density
327 increases, the bats face increased collision risks and more substantial acoustic interference, both
328 of which reduce the probability of efficiently finding the exit. Nevertheless, even at densities of
329 100 bats/3m², most bats (63%) successfully exited the roost within a short timeframe. These results
330 are based on a 2D simulation with up to 33 bats/m², under the assumption that bats can distinguish
331 their own echoes from those of conspecifics. We demonstrate how a simple sensorimotor approach
332 can solve this supposedly challenging task. This approach encompasses the following principles:
333 (1) emission of echolocation calls; (2) reception of reflected echoes and masking signals; (3)
334 detection of reflectors (including walls and conspecifics) using a gammatone filter bank biological
335 receiver; (4) localization of the detected objects; (5) employment of multi-call integration of
336 acoustic detections; (6) adjustment of flight and echolocation behavior based on the distance and
337 angle to the reflectors; and (7) application of simple pathfinding rules to follow walls and gaps
338 while avoiding collisions. Notably, despite the jamming of a substantial percentage of the echoes

339 — particularly, with 100 bats, 50% of the echoes from nearby obstacles at ~1 m distance — the
340 bats managed to maneuver correctly even with this simple approach and partial data.

341 A key component of this success was the multi-call integration: increasing the number of stored
342 calls from one to ten markedly improved performance, raising the exit probability from 20% to
343 87% and halving the collision rate. Real bats likely use a much more sophisticated approach that
344 also includes memorizing the roost's structure⁵¹, using landmarks inside the roost⁵², reliance on
345 the movement of nearby conspecifics^{43,49}, and exploitation of other sensory modalities. We thus
346 expect their actual performance to surpass that of our modeled bats.

347 Our model suggests that acoustic jamming might be less problematic than has been generally
348 assumed^{5,11,53}, and that movement under severe acoustic masking could be mitigated by increasing
349 the call-rate, creating a redundancy across several calls- similar to how real bats behave in a
350 complex environment⁶. In our model, the Inter-Pulse Interval (IPI) naturally varied according to
351 established echolocation behavior, decreasing from 100 msec in the search phase to 35 msec (~28
352 calls per second) in the approach phase, and further to 5 msec (200 calls per second) during the
353 final buzz (Table 2). The results indicate that this redundancy, combined with simple sensorimotor
354 heuristics, enhances successful navigation. This is consistent with several recent studies that have
355 pointed in this direction^{7,24,25}.

356 While echolocation phases—search, approach, and buzz—are traditionally associated with prey
357 capture, similar patterns have been documented in non-foraging tasks such as landing, obstacle
358 avoidance, clutter navigation, and drinking^{54–64}. In these contexts, bats modulate call duration and
359 inter-pulse intervals according to object proximity, generating phase-like transitions even without
360 prey. This supports the interpretation of phase structure as a general proximity-sensing strategy
361 rather than a foraging-specific behavior. In our simulations, bats operated predominantly in the
362 approach phase due to the cluttered cave environment—consistent with natural emergence
363 behavior, where navigation dominates over open-space search. Accordingly, our use of
364 echolocation phases in the model is biologically plausible across a range of sensory-guided tasks.

365 The bat densities we simulated, ranging from 1 to 100 bats per 3m², reflect a wide range reported
366 in field studies. Although bat colonies can be much larger than 100 bats, the maximal simulated
367 density in our model (100 bats per 3 m²) resulted in bats flying in very close proximity, with an
368 average nearest-neighbor distance of 0.27 meters. This density is higher than some of the most-

369 dense reported bat aggregations, including studies on *Miniopterus fuliginosus*⁴⁹, *Myotis*
370 *grisescens*⁶⁵, and *Tadarida brasiliensis*^{4,50,66}, where bats emerge from the roost at rates of 15 to
371 500 bats per second, but fly with an average distance of 0.5 meters between individual bats.

372 We compared the performance of two FM echolocating insectivorous bat species: *Pipistrellus*
373 *kuhlii* (PK) and *Rhinopoma microphyllum* (RM). PK bats emit wideband echolocation signals that
374 are less prone to jamming than RM bats' narrowband signal^{15,67}, as wideband signals distribute
375 energy across a broader frequency range and are thus more robust against interference^{9,68}. Our
376 findings show that PK signals slightly reduce jamming probability (by 9%) and improve wall
377 detection. However, no significant differences in exit probabilities were noted between the two
378 species.

379 Using a simulation allowed us to separate the effects of **acoustic interference (masking)** and
380 **spatial interference (collision avoidance)** and revealed new insights into the sensorimotor
381 strategy that could plausibly be used by real bats. The spatial interference reduced the probability
382 of exiting the roost from 100% to 87%, while the acoustic masking further decreased it to 63%.
383 Increasing call intensity had little effect on exit performance, although slightly improving it at high
384 bat densities. When all bats increased their calling intensity, both desired echoes and masking
385 signals intensified equally, resulting in only a marginal effect. This was tested by varying call
386 intensity levels (100-130 dB SPL) in our simulations (Table 1), demonstrating that beyond a
387 certain level (~110 dB SPL), there is no further benefit in improving obstacle detection. These
388 results align with previous studies that have drawn similar conclusions^{7,24}.

389 Bats constantly adjust their flight speed to their surroundings⁶⁹⁻⁷² and specifically when
390 conspecifics are nearby⁷³. Our study suggests that the optimal velocity for flying through a
391 crowded roost ranges from 6 m/sec to 8 m/sec for densities of 2-100 bats/3m². Exceeding this
392 velocity-range led to a significant drop in exit probability due to a significant increase in wall
393 collisions. We found that this speed did not depend on bat density in accordance with the
394 observations of Theriault et al.⁵⁰. Notably, the reported velocities of RM when exiting a cave²⁵ and
395 PK emergence velocity near the cave⁷⁴ are close to the speed that appears optimal, based on our
396 simulations.

397 We also tested the effects of wall and conspecific target strengths on navigation. Stronger wall
398 echoes substantially improved exit probability and reduced obstacle collisions, despite slightly

399 increasing masking of conspecific echoes (Supplementary Figure 3). In contrast, changes in
400 conspecific reflectivity had minimal impact, likely because both desired and masking signals
401 scaled similarly (Supplementary Figure 4). This result may also stem from our model's assumption
402 that bats slow down, but continue flying at the same direction following a collision with a
403 conspecific.

404 Our basic model assumed that bats can distinguish between wall echoes and conspecific echoes,
405 as demonstrated in previous studies^{75–77}. We suggest that this is a feasible assumption because
406 echoes from cave walls are longer and exhibit distinct spectro-temporal patterns, whereas echoes
407 from smaller objects, such as conspecifics, are shorter^{47,78,79}. However, wall echoes reflected from
408 conspecific calls might resemble those from the bat's own calls in their amplitude and time-
409 frequency characteristics^{20,73,80}. This led us to question how the misidentification of such echoes
410 as obstacles might affect navigation. When unable to distinguish between these echoes, the
411 simulated bats responded to all as if they were their own and thus mis-localized conspecific wall
412 echoes. The confusion led to a substantial drop in exit performance, with only 15% of the bats
413 successfully exiting compared to 82% under no-confusion conditions, at a density of 40 bats/3m².
414 At the same time, the collision rate increased markedly from 0.2 to 0.85 collisions per second.
415 These results demonstrate the vital importance of echo discrimination for successful navigation,
416 highlighting both the necessity of distinguishing between self and conspecific echoes and the
417 classic challenge of detecting desired signals in noisy environments. There is a substantial
418 evidence in the literature supporting the assumption that bats can recognize their own echoes and
419 reliably distinguish them from those of conspecifics^{68,75–77,81}.

420 Previous studies have also demonstrated that bats can aggregate acoustic information received
421 sequentially over several echolocation calls, effectively constructing an auditory scene in complex
422 environments^{5,82–86}. Bats are also known to emit call sequences in groups, particularly when
423 spatiotemporal localization demands are high. Studies have recorded sequences of 2–15 grouped
424 calls, supporting the idea that grouping facilitates echo aggregation^{83,87}. Accordingly, we tested
425 how multi-call clustering process—which included grouping nearby reflectors, removing outliers,
426 and estimating wall orientation based on these clusters—could assist bats in pathfinding, even
427 under the assumption of full confusion. At bat densities of 1 to 40 bats/3m² with masking, the
428 multi-call clustering completely restored the collision rate with walls from 0.85 back to 0.2
429 collisions per second, and significantly improved the exit probability, raising it to 58%, although

430 it did not entirely eliminate the impact of confusion. Our assumption of total confusion between
431 echoes from a bat's own calls and those from conspecifics, as well as our relatively simple
432 clustering model, likely underestimates the true capabilities of real bats when flying in complex
433 environments.

434 Navigation in bats involves processing complex sensory inputs and applying effective decision-
435 making, often requiring an ability to switch strategies^{88–94}. Bats possess a highly accurate spatial
436 memory^{82,90,94–96}, which is essential for tasks like long-distance migration⁵¹, homing⁹⁷, and
437 maneuvering in cluttered environments⁹⁵. Additionally, they utilize acoustic landmarks to orient
438 in total darkness⁵², occasionally rely on vision^{91,92}, particularly at the cave edge where light is
439 available, can passively detect echolocating peers, and perhaps eavesdrop on conspecifics'
440 echoes²³. In this study we focused on whether echolocation alone is sufficient for one of the most
441 difficult orientation tasks that bats perform – exiting a roost at high densities without prior
442 knowledge of the roost's shape, aside from the initial flight direction. Thus, our echolocation-only
443 model, which was based on a five-call integration window during most simulations, probably
444 underestimates real bats' actual performance which also benefits from additional sensory input and
445 can employ addition navigation strategies by sharing information between each other to coordinate
446 and optimize the routes, such as manifested by swarming intelligence^{33,98,99}.

447 Our model highlights the importance of considering sensory interference in animal behavior
448 research and illuminates the impressive capabilities of echolocating bats. Additionally, the model
449 showcases the value of simulations and establishes a framework for future studies on collective
450 movement and swarming animals, and on robotics in complex environments.

451

452 [Methods](#)

453 The simulated bats rely solely on echolocation to detect and locate obstacles and other bats by
454 analyzing the sound waves they receive. They emit directional echolocation calls and receive the
455 echoes reflected by roost walls and conspecifics, as well as the calls of conspecifics and the echoes
456 returning from their calls. The bats adjust their flight trajectory and echolocation behavior based
457 on the estimated location of the detected objects (range and angle), which deteriorates upon
458 acoustic interference. The detection of the received signals is based on the mammalian gammatone
459 filter bank receiver, under the assumption that bats can differentiate between the desired detected

460 obstacles, conspecifics' echoes, and masking signals. We conducted 2D simulations with varying
461 number of bats (from 1 to 100) to analyze the flight trajectories with and without masking
462 interference by conspecifics. In the trials without masking interference the bats successfully
463 detected walls and conspecifics without any hindrance. While real-world bat navigation occurs in
464 3D space, the 2D framework represents a worst-case scenario for echolocation-based navigation,
465 as it increases effective bat density and limits maneuverability compared to a full 3D environment.
466 This approach provides a conservative test of jamming and collision avoidance while maintaining
467 computational tractability, allowing for extensive simulation runs to explore different variables
468 systematically. For a detailed description of the MATLAB simulation see Mazar & Yovel 2020⁷.
469 The simulation arena was designed to mimic a roost with a corridor-like layout, measuring 14.5
470 meters in length and 2.5 meters in width, featuring a right-angle turn located 5.5 meters before the
471 exit (see Figure 1A for a top-down view). All bats started at a random position within a 2×1.5 m
472 area at the far end of the cave, each initiating flight within a 0.1-second window in a random
473 direction between -30° and $+30^\circ$ relative to the exit (see Figure 1). They employ a simple
474 navigation algorithm that dynamically adjusts flight direction based on the detected obstacles or
475 conspecifics (Supplementary Figure 1 and Figure 1D). If no obstacles or conspecifics are detected,
476 they continue in a correlated random walk with a maximal turning rate of approximately 30
477 deg/sec. When obstacles are detected, they are first localized with an error (see below and⁷). Then,
478 if an opening (i.e., a gap of at least 0.5 m between obstacles) is detected, the bats fly through it, if
479 not, they follow the walls while maintaining a 0.8 m distance from them. When approaching an
480 obstacle too closely (<1.5 m and at an angle $<60^\circ$), they execute an obstacle avoidance maneuver.
481 Close proximity to another bat (<0.4 m) triggers an avoidance maneuver away from the nearest
482 conspecific. To evaluate the choice of these distances (1.5 m from walls and 0.4 m from other
483 bats), we tested the sensitivity of the model to conspecific avoidance distances ranging from 0.2
484 to 1.6 meters across bat densities of 2 to 40 bats/ 3m^2 . We observed only a modest effect on exit
485 probability at the highest density, where exit probability increased slightly from 82% to 88% ($p =$
486 0.024, $t = 2.25$, $DF = 958$). No significant changes were observed in exit time, collision rate, or
487 jamming probability across other densities or conditions (GLM, with the number of bats and
488 avoidance distance set as fixed explanatory variables, and the outcome variable being one of: exit
489 probability, time-to-exit, collision rate, or jamming probability). These findings confirm that the
490 modeled behavior is largely insensitive to this parameter range.

491 If the bat collides with a wall, it immediately turns so that its new flight direction is at a 90° angle
492 to the wall. Collisions between conspecifics, which are common in nature and generally not
493 disruptive in low velocities, are not explicitly modeled. Instead, during the collision event the bat
494 keeps decreasing its velocity and changing its flight direction until the distance between bats is
495 above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the
496 effort required to avoid collisions resulting in forced changes in flight's direction and speed, rather
497 than from the collision itself. Each decision relies on a multi-call integration window that records
498 the estimated locations of detected reflectors from recent echolocation calls (see Supplementary
499 Figure 2A). By default, this window includes the last five calls, and we systematically tested the
500 effect of using between 1 and 10 calls. This algorithm functions without any prior knowledge of
501 the bats' location or the roost's structure. To assess performance, we measured the probability of
502 successfully exiting the roost within a 15-second window. The time-based exit limit was chosen
503 because it is approximately twice the average exit time for 40 bats under acoustic interference in
504 our model, allowing bats sufficient time to correct their trajectory and circle back if they missed
505 the exit on the first attempt. This threshold keeps simulation times reasonable while still capturing
506 the key aspects of exit dynamics.

507 Echolocation behavior and flight speed follow the phases widely reported in insectivorous bats,
508 categorized as "search," "approach," and "buzz"^{55,100–104} with specific echolocation parameters for
509 *Pipistrellus kuhlii* (Kuhl's pipistrelle)⁷⁰ and *Rhinopoma microphyllum* (greater mouse-tailed bat)²⁵.
510 The transition distances between these phases were identical for both species (see Table 2) and are
511 based on empirical studies documenting hunting and obstacle avoidance behavior^{55,56,69,103–105}. In
512 nature, call parameters (Inter Pulse Interval (IPI), call duration, and start and stop frequencies) are
513 primarily shaped by the target distance and echo strength. Accordingly, there is little difference in
514 echolocation between prey capture and obstacles-related maneuvers, aside from intensity
515 adjustments based on target strength^{56,57,87,106}. In our study, due to the dense cave environment,
516 the bats are found to operate in the approach phase nearly all of the time, which is consistent with
517 natural cave emergence behavior, where they are navigating through a cluttered environment rather
518 than engaging in open-space search. Our model was designed to remain as simple as possible while
519 relying on conservative assumptions that may underestimate bat performance. If, in reality, bats
520 fine-tune their echolocation calls even earlier or more precisely during navigation than assumed,
521 our model would still conservatively reflect their actual capabilities.

522 The simulated echolocation call consists of the dominant harmony of the bat's FM Chirp (1st
523 harmony of the PK and 2nd harmony of the RM). The echolocation signals used in our simulation
524 were modeled as logarithmic FM chirps, implemented using the MATLAB built-in function (e.g.,
525 *chirp(t, f0, t1, f1, 'logarithmic')*). This approach aligns with the known nonlinear frequency
526 modulation characteristics of *Pipistrellus kuhlii* (PK) and *Rhinopoma microphyllum* (RM). Table
527 2 provides the specific echolocation parameters used in the model, based on Kalko 1995⁶⁹, and
528 Goldshtain 2025²⁵. During the search phase, the bats fly at a nominal velocity of 6 m/sec, reducing
529 it by half during the approach phase and continuously adjusting their speed according to the
530 relative direction of the target, using a delayed linear adaptive law^{7,103,107}. The maneuverability of
531 the bats is constrained to a maximum of 4 m/sec², limiting both angular and linear accelerations.
532 Additionally, our model includes random individual variations in terminal frequencies, assuming
533 a normal distribution with a standard deviation of 1 kHz across the bats.

<i>Pipistrellus kuhlii</i> (Kuhl's pipistrelle)						
Flight phase	Search	Approach		Buzz		
Parameter		Start	End	Terminal 1 start	Terminal 1 end	Terminal 2
Inter Pulse Interval [ms]	100	70	35	18	6	5
Call duration [ms]	7	5	2	2	1	0.3
Terminal frequency [kHz]	39	39	39	39	39	39
Chirp bandwidth [kHz]	8	35	30	30	20	20
Call intensity [dB-SPL]	120	120	90	90	80	80
Distance to target [m]	>1.2	1.2	0.4	0.4	0.2	<0.2
<i>Rhinopoma microphyllum</i> (greater mouse-tailed bat)						
Flight phase	Search	Approach		Buzz		
Parameter		Start	End	Terminal 1 start	Terminal 1 end	Terminal 2
Inter Pulse Interval [ms]	100	80	20	18	10	9
Call duration [ms]	12	7	2	2	1.5	0.75
Terminal frequency [kHz]	26	26	26	26	26	23.5
Chirp bandwidth [kHz]	3	4	5	3	3	3
Call intensity [dB-SPL, @0.1m]	120	120	90	90	80	80
Distance to target [m]	>1.2	1.2	0.4	0.4	0.2	<0.2

534 **Table 2: Echolocation parameters.** The table presents the echolocation parameters of the two bat species
535 we simulated during the specified flight phases (i.e., search, approach, buzz, and final buzz). In each phase,
536 except for the search phase, in which the parameters remain constant, the parameters for each call are
537 determined by the distance to the closest detected object.

538 The sound intensity of the echoes generated by the bat's own calls and those of its conspecifics
539 are calculated using the sonar equation^{7,108} (pp. 196-198), as shown in Equation 1, geometrical
540 relations are according to Supplementary Figure 5. The received levels of the masking calls are
541 determined by using the Friis transmission equation¹⁰⁹, as shown in Equation 2. All signal levels
542 were simulated and reported in dB-SPL, referenced to 0.1 meters from the emitting bat. Bats are
543 modeled acoustically as spherical reflectors with a fixed target strength of -23dB assuming
544 reference distance 1 meter, reflecting sound isotropically. This approximates a sphere with a radius
545 of 0.15 m, corresponding to the approximate wingspan of *Rhinopoma microphyllum* (RM)^{25,110}.
546 While target strength can vary with wing posture and body geometry, we chose a representative
547 value within the reported biological range for simplicity and model consistency. Our own
548 measurement of a 3D-printed RM bat yielded a target strength of -32 dB, and a sensitivity analysis
549 (Supplementary Figure 4) showed that model performance was only mildly affected across a wide
550 range of target strengths (see Supplementary Figure 4). This supports the robustness of our
551 approach to different sized bats. Walls are modeled as composites of individual reflectors placed
552 20 cm apart; each treated as a sphere with a 20 cm radius and a target strength of -22.5dB. For
553 simplicity, in our model, the head is aligned with the body, therefore the direction of the
554 echolocation beam is the same as the direction of the flight. The directivity of the calls and the
555 received echoes is defined by the piston model^{7,102} with radii of 3 mm for the mouth-gap and 7
556 mm for the ear. The directivity is not directly influenced by velocity but follows behavioral
557 dependent frequency changes. As the bat transitions from search to approach to buzz phases, it
558 emits higher-frequency calls, leading to increased directivity. This shift coincides with a natural
559 reduction in speed during the approach phase. Echo delays are calculated as the two-way travel
560 time of the signals from the emitter to the target.

$$\text{Equation 1: } \mathbf{P}_r = \mathbf{P}_t \cdot \frac{G_t(\phi_{target,f}) \cdot G_r(\phi_{target,f}) \lambda^2}{(4\pi)^3 D^4} \cdot 10^{-2\alpha_{att}(f)/10 \cdot (D-0.1)} \cdot \sigma(f)$$

$$\text{Equation 2: } \mathbf{P}_{mask} = \mathbf{P}_t \mathbf{G}_t(\phi_{txr_x}, f) \mathbf{G}_r(\phi_{r_xt_x}, f) \cdot \left(\frac{\lambda}{4\pi D_{txrx}} \right)^2 10^{-\alpha_{att} \cdot (D-0.1)}$$

$$\text{Equation 3: } P_{echoesFromMasking} = P_t \cdot \frac{G_t(\phi_{tx}, f) \cdot G_r(\phi_{rx}, f) \lambda^2}{(4\pi)^3 D_{tx}^2 D_{rx}^2} \cdot 10^{-\alpha_{att} \cdot (D_{tx} + D_{rx} - 0.2)} \cdot \sigma(f)$$

where,

P_r : level of the received signal [SPL]

P_t : level of the transmitted call [SPL]

P_{mask} : level of the masking signal as received by the bat [SPL]

$P_{echoesFromMasking}$: level of the echoes reflected by conspecifics and received by the bat [SPL]

$G_t(\phi, f)$: gain of the transmitter (mouth of the bat, piston model), as a function of azimuth and frequency (f) [numeric]

$G_r(\phi, f)$: gain of the receiver (ears of the bat, piston model) [numeric]

ϕ_{target} : the angle between the bat and the reflected object [rad]

D: distance between the bat and the target [m]

ϕ_{txr_x}, D_{txr_x} : the angle [rad], and the distance [m] between the transmitting conspecific and the receiving focal bat (from the transmitter's perspective)

ϕ_{rxt_x}, D_{rxt_x} : the angle [rad], and the distance [m] between the receiving bat and the transmitting bat (from the receiver's perspective)

ϕ_{tx} : the angle [rad], between the masking bat and target (from the transmitter's perspective)

$\alpha_{att}(f)$: atmospheric absorption coefficient for sound [dB/m]

$\sigma(f)$: SONAR cross-section of the target [m^2]

λ : The wavelength of the signal [m]

561 To maintain model simplicity, we did not incorporate Doppler effects in the echolocation model.
562 While Doppler shifts can affect frequency perception, their impact on jamming and navigation
563 performance is minimal in this context¹¹¹. Moreover, the inter-individual random signals
564 frequencies were larger than the expected Dopplers. In addition, the model does not assign echoes
565 to earlier calls if their delays exceed the bat's own Inter-Pulse Interval (IPI), and thus does not
566 simulate pulse-echo ambiguity.

567 To model the detection process in the bat's cochlea, we employed a monoaural filter bank
568 receiver^{47,112,113} consisting of 80 channels, each with three components: (i) a gammatone filter of
569 order 8, acting as a bandpass filter with center frequencies logarithmically scaled between 10kHz
570 and 80kHz⁷; (ii) a half-wave rectifier; and (iii) a lowpass filter (Butterworth, fc=8kHz, order=6).
571 Object detection and distance estimation are conducted using Saillant's method^{7,47,114}, based on
572 the sum of detections in the active channels, see Figure 1C, D. Initially, a de-chirping process
573 calculates the reference frequency-delay by detecting the peak in the response of each channel to
574 the emitted call in a noise-free environment. Subsequently, the received signal, containing both
575 desired echoes and masking sounds, passes through the filter bank. In each channel, all peaks
576 above a threshold level are detected and time-shifted by the de-chirp reference. The detection
577 threshold in each channel was set to the higher of two values: either 7 dB above the noise floor (0
578 dB-SPL) or the maximum received signal level minus 70 dB, thereby enforcing a dynamic range
579 of 70dB. Peaks from all channels are aggregated in 5 μ s windows and convolved with a Gaussian
580 kernel with $\sigma=5$ μ s. Output peaks that exceed the threshold level, set at 10% of the number of
581 active channels, and fall within a time window of 100 μ s around the expected delay, are considered
582 successful detections.

583 To evaluate the impact of acoustic interference, we conducted the detection procedure twice. The
584 first, termed "interference-free detection", comprised only the desired echoes, with white Gaussian
585 noise at a level of 0 dB-SPL and without masking signals. The second, termed "full detection"
586 comprised the desired echoes, Gaussian noise, and the masking signals. Detected echoes in the full
587 detection were defined by the strongest peak within a four-millisecond window (three milliseconds
588 before and one millisecond after, accounting for forward and backward masking^{24,115–117}) detected
589 above the threshold within 100 μ s of the interference-free detections. If the detected peak in the
590 full detection condition was delayed by more than 100 μ s compared to the interference-free case,
591 it was defined as a miss-detection. Peaks with smaller timing shifts were considered **detection**
592 **with timing errors**. **Jammed echoes** were defined as echoes that were detected under the
593 interference-free condition but not detected under the full detection condition. The **jamming**
594 **probability** was calculated as the ratio of jammed echoes in the full detection condition to the
595 detected echoes in the interference-free condition.

596 After detection, the bat estimates the range and the Direction of Arrival (DOA) of the reflecting
597 objects. The range is determined by the delay of the detected echo, including any errors derived

598 from the filter-bank process in the “full detection” process (i.e., including all masking
599 signals).^{7,110,113} The direction is not explicitly estimated through binaural processing. Instead,
600 based on previous studies^{115,118}, we assumed that bats can estimate the direction of arrival with an
601 angular error that depends on the Signal-to-Noise Ratio (SNR) and the angle. The inputs to this
602 process include the peak level of the desired echo, the noise level, and the level of acoustic
603 interference. The output is the estimated direction of arrival with a random error applied based on
604 the SNR. At an angle of 0° and an SNR of 10 dB, the standard deviation of the error is 1.5°¹¹⁹ and
605 ⁷ (Equation 4), with the error capped at a maximum of 3° in our model.

606 Equation 4: $DOA_{error} = \sqrt{\left(\frac{k_2}{SNR}\right)^2 + (k_3 + k_4 \cdot \sin(\phi))^2}$

607 where, k_2 , k_3 , and k_4 are constants chosen to produce a DOA error consistent with the range
608 described above.

609
610 To evaluate the impact of the assumption that bats can distinguish between echoes caused by their
611 own calls and those caused by other bats (i.e., conspecifics' reflectors), we tested an alternative
612 model in which the simulated bats treat all echoes reflected from walls as if they have originated
613 from their own calls. The distance to reflectors of conspecifics' calls is estimated based on the time
614 difference between the echo and the bat's last call. The direction of arrival is estimated by the
615 angle between the bat and the physical reflector, with an added random error (the same process
616 used for their own echoes).

617 In real bats, spatial processing in the brain involves integrating auditory and spatial information
618 over time to construct a coherent map of the environment^{5,68}. This neural computation is crucial
619 for navigation and prey detection in complex environments. To examine whether spatial
620 integration mitigates the confusion problem, we added a ‘multi-call clustering’ module that was
621 based on the sensory information obtained within a one-second memory window. The clustering
622 comprised the following steps: (i) clustering all detections in memory into groups with a maximum
623 internal distance of 10 cm; (ii) reconstructing the estimated walls positions and directions based
624 on the average of clusters that include at least two detections (rather than relying on single
625 reflections); and (iii) identifying openings between reconstructed wall edges ranging from 0.5 to
626 2.25 meters in width, see Supplementary Figure 1 and Supplementary Figure 2B. The model

627 assumes that bats store echo locations in an allocentric x-y coordinate system, transforming
628 detections from a local to a global spatial framework. Collision avoidance is based not only on the
629 integrated spatial representation but also on immediate echoes from the last call (prior to
630 clustering), including potential uncorrected false detections and localization errors, which are
631 independently processed for real-time evasive maneuvers.

632 Statistical analysis

633 Statistical analysis and the roost-exit model were conducted using MATLAB[®] 2023a.

634 Tests were performed with a significance level of 0.05. For each simulated scenario, we examined
635 the effect of the various parameters on exit probability, time-to-exit, collision rate, and the
636 jamming probability, using Generalized Linear Models (GLMs). The GLM tests were executed
637 with MATLAB built-in function ‘**fitglm()**’. Probability variables (such as exit and jamming
638 probabilities) were treated as binomially distributed; rate variables (such as collision rate) were
639 treated as Poisson distributed, and all other variables were considered normally distributed. Unless
640 otherwise stated, all explaining variables were set as fixed factors. All statistical analyses,
641 including the statistical test and the corresponding sample sizes, are described throughout the text
642 and summarized in Table 1. Standard errors are calculated across all individuals within each
643 scenario, without distinguishing between different simulation trials.

644 Data availability

645 All data and codes generated during this study are included in the manuscript and supporting files.
646 Source code files have been uploaded with a Graphical User Interface and a readme file for
647 explanation. Data are available at zenodo and github:

648 <https://zenodo.org/records/16992617> ([link](#))

649 <https://github.com/omermazar/Colony-Exit-Bat-Simulation/tree/main> ([link](#))

650

651

652

653

654

655

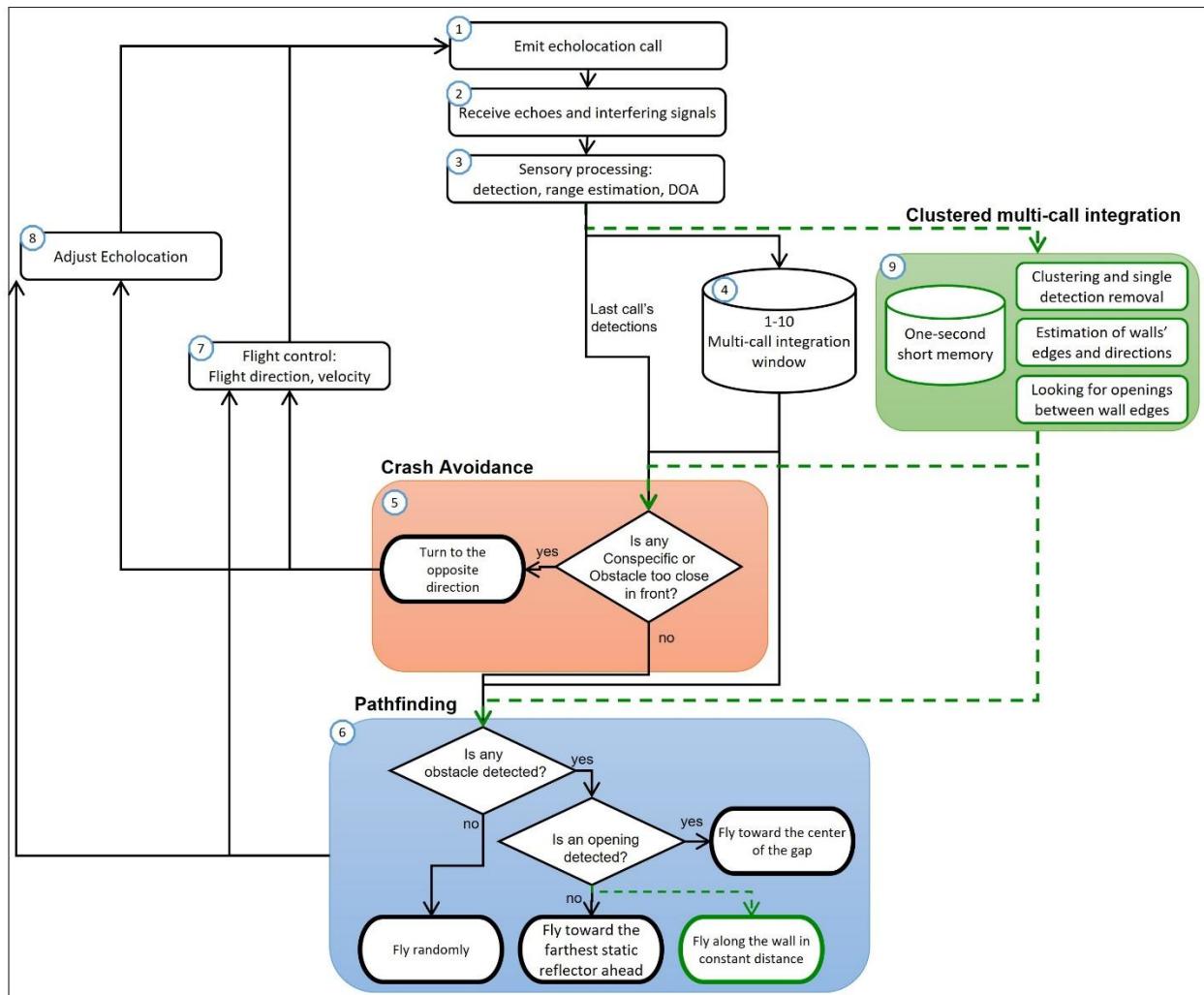
656 Supplementary

657 Supplementary Movie 1

658 [link](#)

659

660 Supplementary Figure 1: Decision-making in echolocation-based pathfinding

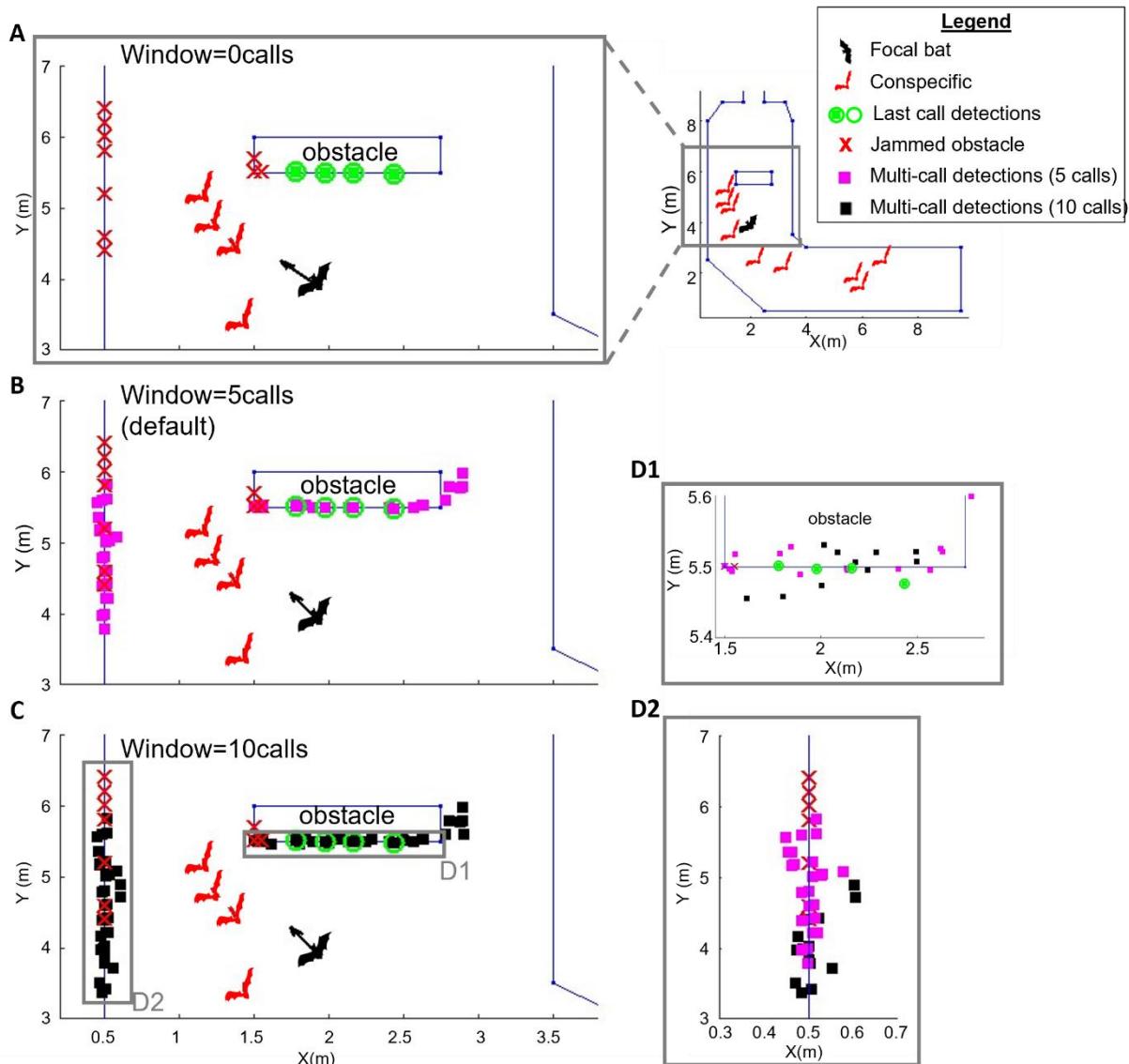


661

662 This diagram illustrates the sensorimotor decision-making process based solely on echolocation.
663 The process starts with the emission of an echolocation call (1) and the reception of echoes and
664 interfering signals (2), followed by sensory processing for detection, range estimation, and
665 direction of arrival (DOA) (3). After integrating detections over a 1–10 call window (4), the bat
666 engages in **crash avoidance** (5) by evaluating the proximity of conspecifics and obstacles directly
667 ahead. If either is too close, the bat turns in the opposite direction of the detected obstacle, by
668 applying maximum angular velocity away from it (e.g., if the obstacle is on the right, the bat turns
669 left). If no immediate threat is detected, the bat proceeds to **pathfinding** (6). During pathfinding,
670 it checks for obstacles and, if an opening is detected, flies toward the gap's center. Without the
671 optional **multi-call clustering process** (green), the bat simply integrates detections and flies
672 toward the farthest detected obstacle, interpreting it as a wall edge. If the multi-call clustering is
673 included (9), a one-second short memory aids in clustering detections, estimating wall edges, and
674 identifying openings, while also allowing the bat to follow walls at a constant distance.
675 Throughout, the bat continuously adjusts echolocation parameters (8) and controls flight direction
676 and velocity (7) based on ongoing sensory information and decision-making.

677

678 Supplementary Figure 2A: Multi-Call Integration



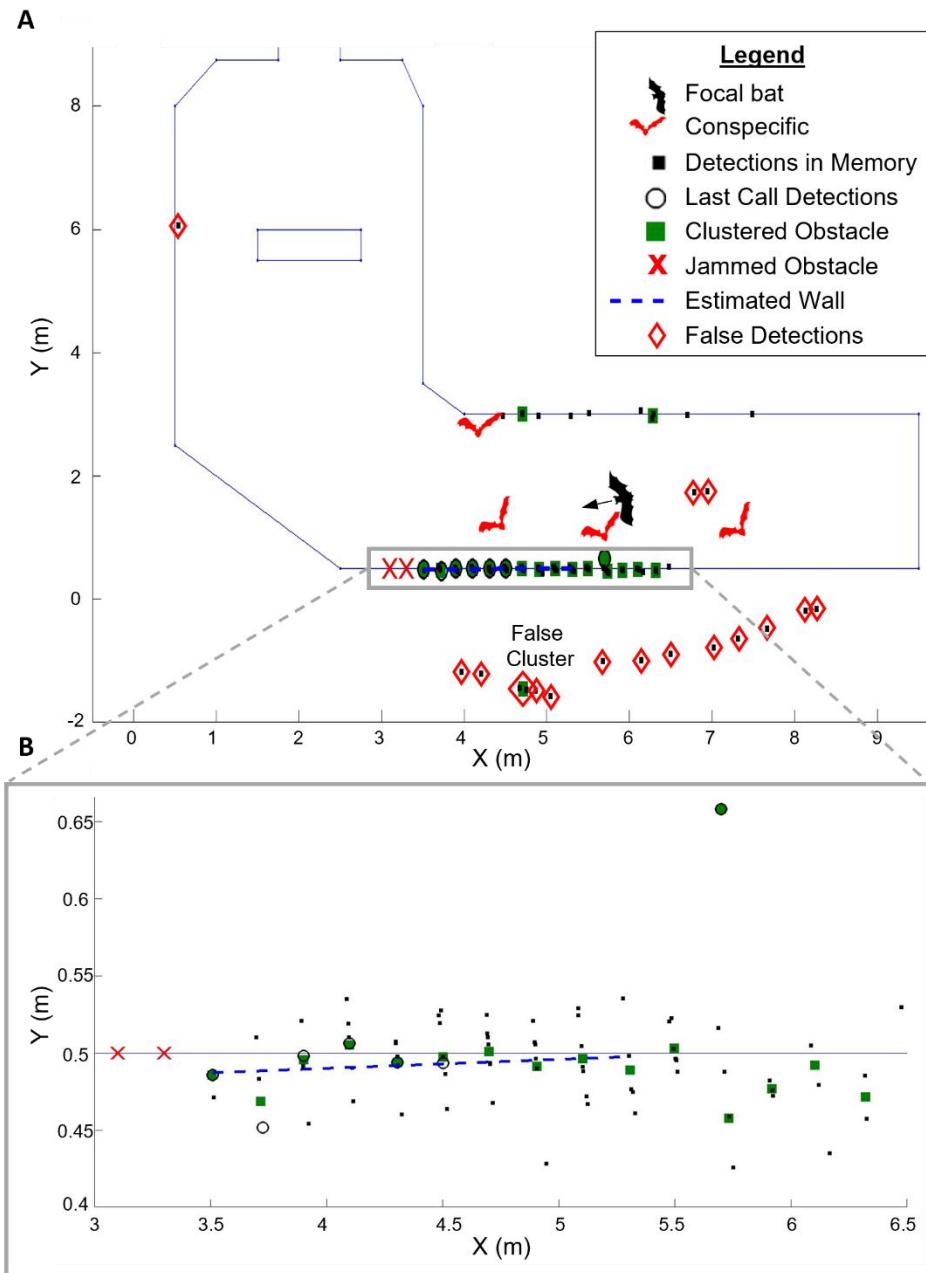
679

680 This figure demonstrates the effect of multi-call integration under non-confusing conditions. The
 681 upper-right panel shows the position of the focal bat (black) and nine conspecifics (red) within the
 682 roost corridor, with a zoomed-in view of the gray rectangle provided in Panels A–C.
 683 (A) When the integration window is set to zero calls (no memory), the bat relies solely on the latest
 684 call. Green circles and squares represent detected reflectors, while red Xs indicate missed
 685 (jammed) detections. Notably, the left wall of the corridor remains undetected due to jamming.
 686 (B, C) Increasing the integration window to five calls (magenta squares) and ten calls (black
 687 squares) accumulates detections from prior calls, improving coverage of the environment. In this
 688 basic integration model, each detection is treated independently, without clustering.

689 **(D1, D2)** Magnified views of the grey regions indicated in Panel C, comparing detections across
690 0, 5, and 10-call windows (green, magenta, and black, respectively), illustrating how extended
691 memory improves detection robustness. Note that the X-Y aspect ratios in D1 and D2 differ from
692 the main panels to enhance visibility of spatial distributions.

693

694 Supplementary Figure 2B: Multi-Call Clustering Example

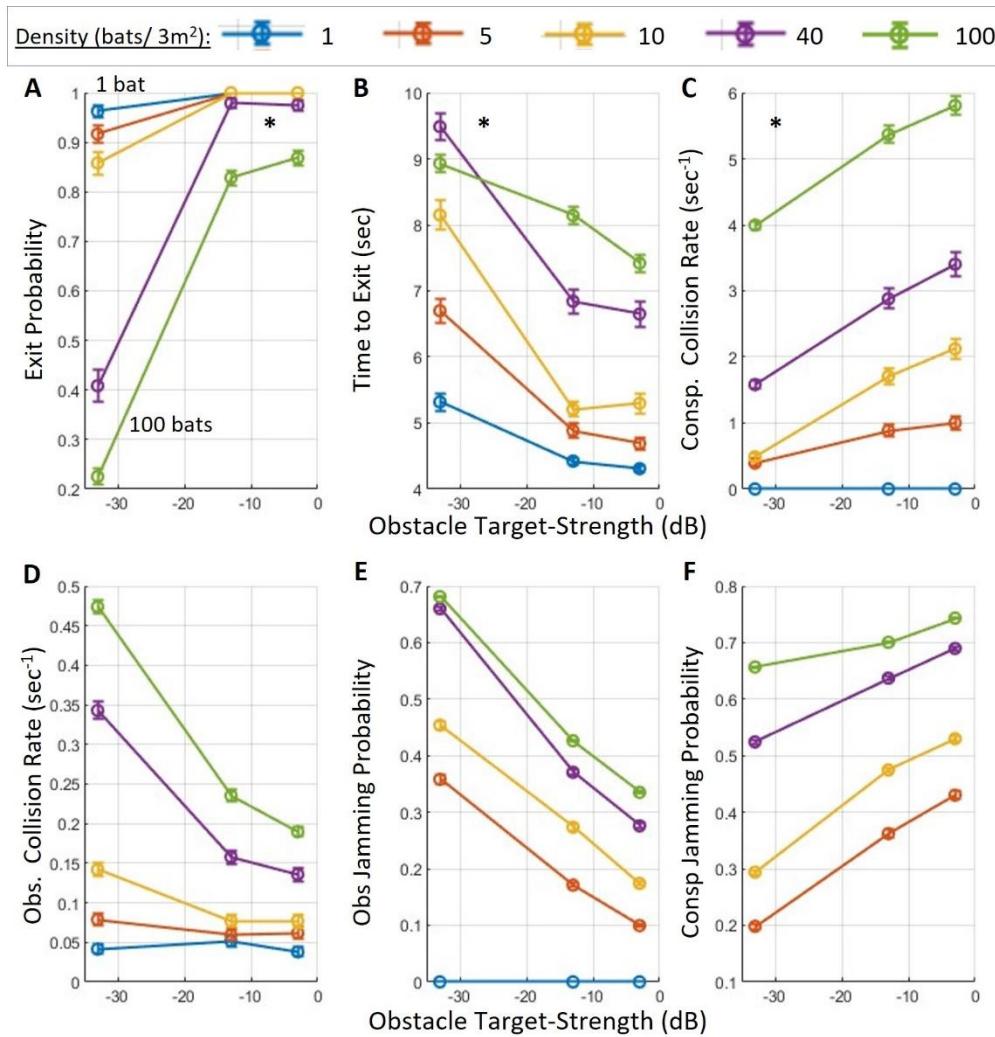


695

696 This figure illustrates the multi-call clustering algorithm under full-confusion conditions. (A) A
697 focal bat (black) and four conspecifics (red) are shown in the lower corridor. (B) A zoom-in of the
698 gray rectangle in (A). Black ovals represent detections from the last call; red X's indicate jammed
699 echoes; black squares represent all detections stored across the integration window (before
700 clustering), each subject to localization error. When not applying multi-call clustering – the bat
701 would rely on all of these dots as reflectors. Under full confusion, the bat cannot distinguish self-
702 echoes from conspecific echoes, leading to false detections (red diamonds). Detections are
703 clustered when a reflector is detected twice or more within a 10 cm radius (green squares). The
704 clustered reflectors are used to estimate wall directions (blue dashed line) and detect possible gaps
705 (not shown). As a result of to the multi-call clustering algorithm, most false detections are removed
706 as outliers, except for one erroneous cluster (Panel A). Collision avoidance maneuvers are based
707 on both the clustered obstacles and the raw detections from the latest call (empty black ovals).

708

709 Supplementary Figure 3: Sensitivity of exit performance to obstacle target strength



721 GLM) . **(C) Conspecific Collision Rate** increased slightly with stronger obstacle echoes ($p << 10^{-10}$, $t = 27.6$, DF = 8157, GLM). **(D) Obstacle Collision Rate** decreased significantly with increasing target strength ($p << 10^{-10}$, $t = -10.7$, DF = 8157, GLM), reflecting better detection of walls and structures. **(E) Obstacle Jamming Probability** decreased consistently ($p << 10^{-10}$, $t = -19.8$, DF = 8157, GLM). **(F) Conspecific Jamming Probability** increased with obstacle target strength ($p << 10^{-10}$, $t = 27.6$, DF = 8157, GLM).

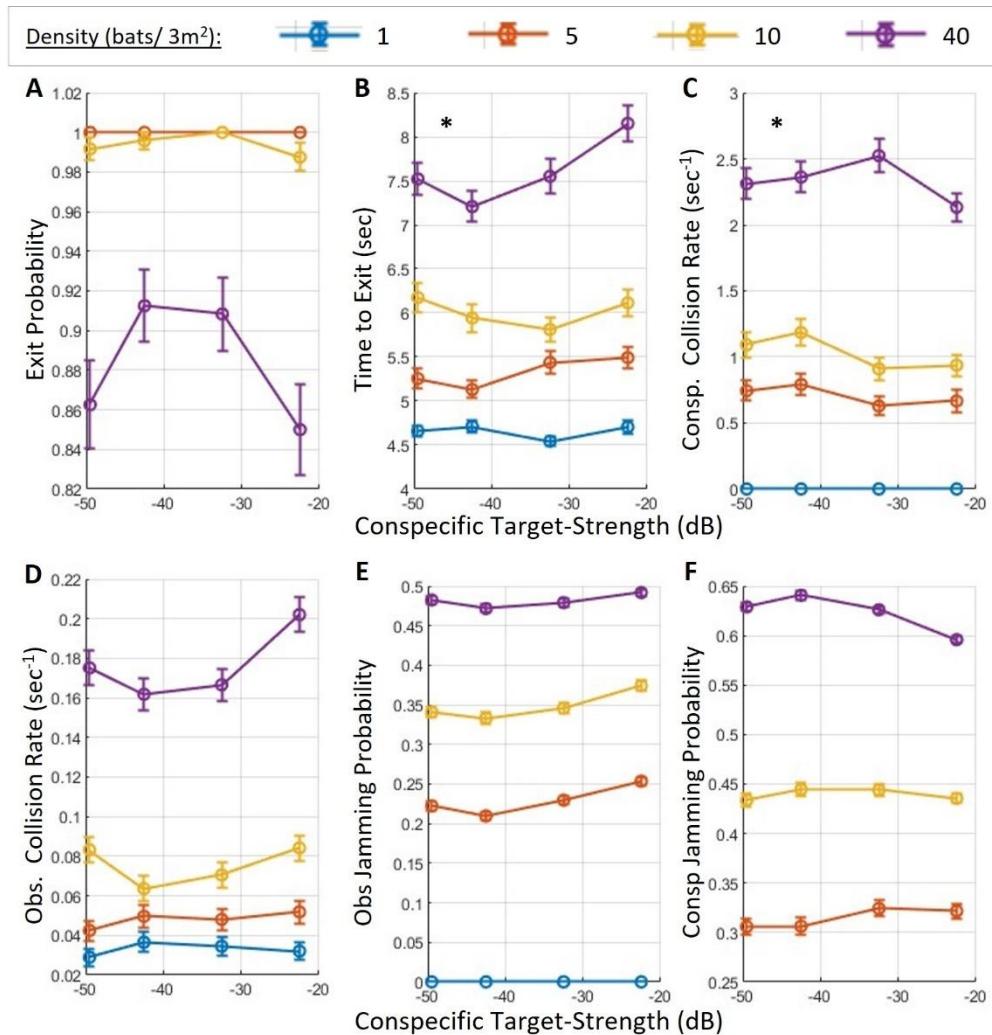
727 These results suggest that stronger wall echoes improve environmental awareness at the cost of 728 slightly increased masking of conspecific echoes. Despite this, the overall performance— 729 particularly exit probability and reduced obstacle collisions—improves significantly.

730 In all panels, circles represent means and bars represent standard errors. The error bars are 731 present but very small due to the large number of simulation repetitions, and thus may not be 732 visually noticeable at the plotted scale. See Table 1 for the number of simulated bats.

733

734

735 Supplementary Figure 4: Sensitivity of exit performance to conspecific's target strength



736

737 This figure shows how changes in the acoustic target strength of conspecifics affect navigation
 738 performance across four bat densities (1, 5, 10, and 40 bats/3 m²). Overall, our results indicate that
 739 target strength has a relatively minor impact on performance, likely because it affects both desired
 740 echo signals and masking signals equally. Interestingly, this analysis also suggests that our model
 741 is more sensitive to the bat's response to nearby conspecifics than to the physical collision impact
 742 itself. **(A)** Exit probability was not significantly affected by conspecific target strength ($p=0.28$,
 743 $t=-1.09$, $DF=5757$, GLM, see details in Table 1). Note that the performance curves for densities of
 744 1 and 5 bats overlap almost completely. **(B)** Time-to-exit increased with target strength at high
 745 density, with a maximal effect size of ~1 second at 40 bats ($p = 0.003$, $t = 3.02$, $DF = 5578$). **(C,**
 746 **D)** Collision rates with conspecifics decreased significantly with stronger target strength ($p =$

747 0.0002, $t = -3.7$, $DF = 5757$), while collisions with obstacles remained statistically unchanged (p
748 $= 0.23$, $t = 1.18$, $DF = 5757$). **(E, F)** Jamming probability was not significantly affected for either
749 conspecific or obstacle echoes ($p = 0.6$, $t = -0.51$, $DF = 4762$; $p = 0.19$, $t = 1.31$, $DF = 5757$,
750 respectively). This aligns with the notion that both useful and interfering signals scale similarly
751 with target strength. Importantly, the probability of detecting a conspecific located within 1 meter
752 increased substantially with higher target strength, improving from 25% to 43% at 40 bats ($p <$
753 10^{-10} , $t = 6.45$, $DF = 4162$).

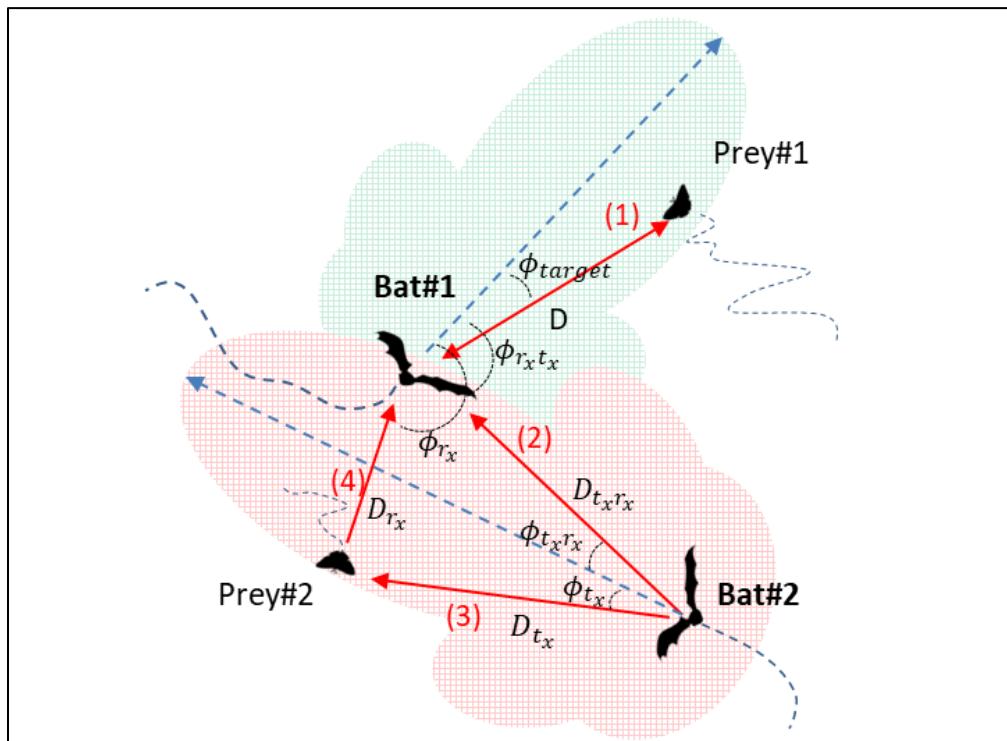
754 In all panels, circles represent means and bars represent standard errors. The error bars are present
755 but very small due to the large number of simulation repetitions, and thus may not be visually
756 noticeable at the plotted scale. See Table 1 for the number of simulated bats.

757

758

759 Supplementary Figure 5: Angles and distances for two bats and two reflecting objects.

760



761
762 Bat1 receives a reflected echo from Prey1 or a stationary obstacle located at a distance of D from
763 it, with an angle ϕ_{target} relative to its flight direction (red arrow 1). Prey1 is also within the

764 detection range of Bat1, depicted by the green shaded piston area. Bat1 also receives masking
765 sounds from Bat2. The echolocation signals emitted by Bat2 arrive at the ear of Bat1 at an angle
766 ϕ_{txr_x} relative to its flight direction and from a distance of D_{txr_x} (red arrow 2). Additionally, the
767 echolocation signals of Bat2 are reflected by Prey2, before being received by Bat 1. These reflected
768 signals act as masking signals at a relative angle of angle ϕ_{rx} , and from a distance of D_{rx} from
769 Bat1.

770

771

772 [References](#)

- 773 1. Glover, A. M. & Altringham, J. D. Cave selection and use by swarming bat species. *Biol
774 Conserv* **141**, 1493–1504 (2008).
- 775 2. Hristov, N. I., Betke, M., Theriault, D. E. H., Bagchi, A. & Kunz, T. H. Seasonal variation
776 in colony size of brazilian free-tailed bats at Carlsbad cavern based on thermal imaging. *J
777 Mammal* **91**, 183–192 (2010).
- 778 3. Vanderelst, D., Holderied, M. W. & Peremans, H. Sensorimotor Model of Obstacle
779 Avoidance in Echolocating Bats. *PLoS Comput Biol* **11**, e1004484 (2015).
- 780 4. Gillam, E. H., Hristov, N. I., Kunz, T. H. & McCracken, G. F. Echolocation behavior of
781 Brazilian free-tailed bats during dense emergence flights. *J Mammal* **91**, 967–975 (2010).
- 782 5. Ulanovsky, N. & Moss, C. F. What the bat's voice tells the bat's brain. *Proc Natl Acad Sci
783 U S A* **105**, 8491–8498 (2008).
- 784 6. Lin, Y., Abaid, N. & Müller, R. Bats adjust their pulse emission rates with swarm size in the
785 field. *Citation: The Journal of the Acoustical Society of America* **140**, 4318 (2016).
- 786 7. Mazar, O. & Yovel, Y. A sensorimotor model shows why a spectral jamming avoidance
787 response does not help bats deal with jamming. *Elife* **9**, 1–23 (2020).
- 788 8. Takahashi, E., Hyomoto, K., Riquimaroux, H., Watanabe, Y. & Ohta, T. Adaptive changes
789 in echolocation sounds by *Pipistrellus abramus* in response to artificial jamming sounds.
790 *Journal of Experimental Biology* **217**, 2885–2891 (2014).
- 791 9. Ulanovsky, N., Fenton, M. B., Tsoar, A. & Korine, C. Dynamics of jamming avoidance in
792 echolocating bats. *Proceedings of the Royal Society B: Biological Sciences* **271**, 1467–1475
793 (2004).
- 794 10. Gillam, E. H. & Montero, B. K. Influence of call structure on the jamming avoidance
795 response of echolocating bats. *J Mammal* **97**, 14–22 (2016).

796 11. Bates, M. E., Stamper, S. A. & Simmons, J. A. Jamming avoidance response of big brown
797 bats in target detection. *Journal of Experimental Biology* **211**, 106–113 (2008).

798 12. Luo, J. & Moss, C. F. Echolocating bats rely on audiovocal feedback to adapt sonar signal
799 design. *Proceedings of the National Academy of Sciences* **114**, 10978–10983 (2017).

800 13. Corcoran, A. J. & Conner, W. E. Bats jamming bats: Food competition through sonar
801 interference. *Science* (1979) (2014).

802 14. Cvikel, N. *et al.* Bats aggregate to improve prey search but might be impaired when their
803 density becomes too high. *Current Biology* **25**, 206–211 (2015).

804 15. Cvikel, N. *et al.* On-board recordings reveal no jamming avoidance in wild bats. *Proceedings*
805 *of the Royal Society B: Biological Sciences* **282**, 20142274 (2015).

806 16. Götze, S., Koblitz, J. C., Denzinger, A. & Schnitzler, H. U. No evidence for spectral jamming
807 avoidance in echolocation behavior of foraging pipistrelle bats. *Sci Rep* **6**, 1–13 (2016).

808 17. Fawcett, K., Jacobs, D. S., Surlykke, A. & Ratcliffe, J. M. Echolocation in the bat,
809 Rhinolophus capensis: the influence of clutter, conspecifics and prey on call design and
810 intensity. *Biol Open* **4**, 693–701 (2015).

811 18. Gillam, E. H., Ulanovsky, N. & McCracken, G. F. Rapid jamming avoidance in biosonar.
812 *Proceedings of the Royal Society B: Biological Sciences* **274**, 651–660 (2007).

813 19. Giuggioli, L., McKetterick, T. J. & Holderied, M. Delayed Response and Biosonar
814 Perception Explain Movement Coordination in Trawling Bats. *PLoS Comput Biol* **11**,
815 1004089 (2015).

816 20. Obrist, M. K. Flexible bat echolocation: the influence of individual, habitat and conspecifics
817 on sonar signal design. *Behav Ecol Sociobiol* **36**, 207–219 (1995).

818 21. Krivoruchko, K. *et al.* A social foraging trade-off in echolocating bats reveals that they
819 benefit from some conspecifics but are impaired when many are around. *Proc Natl Acad Sci
820 U S A* **121**, e2321724121 (2024).

821 22. Hristov, N. I., Betke, M. & Kunz, T. H. Applications of thermal infrared imaging for research
822 in aeroecology. *Integr Comp Biol* **48**, 50–59 (2008).

823 23. Lin, Y. & Abaid, N. Modeling perspectives on echolocation strategies inspired by bats flying
824 in groups. *J Theor Biol* **387**, 46–53 (2015).

825 24. Beleyur, T. & Goerlitz, H. R. Modeling active sensing reveals echo detection even in large
826 groups of bats. *Proc Natl Acad Sci U S A* **116**, 26662–26668 (2019).

827 25. Goldshtain, A. *et al.* Onboard recordings reveal how bats maneuver under severe acoustic
828 interference. *Proceedings of the National Academy of Sciences* **122**, e2407810122 (2025).

829 26. Pearce, D. J. G., Miller, A. M., Rowlands, G. & Turner, M. S. Role of projection in the
830 control of bird flocks. *Proc Natl Acad Sci U S A* **111**, 10422–10426 (2014).

831 27. Bastien, R. & Romanczuk, P. A model of collective behavior based purely on vision. *Sci*
832 *Adv* **6**, eaay0792 (2020).

833 28. Davidson, J. D. *et al.* Collective detection based on visual information in animal groups.
834 *Journal of the Royal Society* **18**, 2021.02.18.431380 (2021).

835 29. Aidan, Y., Bleichman, I. & Ayali, A. Pausing to swarm: locust intermittent motion is
836 instrumental for swarming-related visual processing. *Biol Lett* **20**, 20230468 (2024).

837 30. Pitcher, T. J., Partridge, B. L. & Wardle, C. S. A blind fish can school. *Science (1979)* **194**,
838 963–965 (1976).

839 31. Partridge, B. L. The Structure and Function of Fish Schools. **246**, 114–123 (1982).

840 32. Strandburg-Peshkin, A. *et al.* Visual sensory networks and effective information transfer in
841 animal groups. *Current Biology* **23**, R709–R711 (2013).

842 33. Youssefi, K. A. R. & Rouhani, M. Swarm intelligence based robotic search in unknown
843 maze-like environments. *Expert Syst Appl* **178**, (2021).

844 34. Cheraghi, A. R., Shahzad, S. & Graffi, K. Past, Present, and Future of Swarm Robotics. in
845 *Proceedings of SAI Intelligent Systems Conference* vol. 296 190–233 (Springer, 2021).

846 35. Faria Dias, P. G. *et al.* Swarm robotics: A perspective on the latest reviewed concepts and
847 applications. *Sensors* **21**, 2062 (2021).

848 36. Couzin, I. D., Krause, J., James, R., Ruxton, G. D. & Franks, N. R. Collective Memory and
849 Spatial Sorting in Animal Groups. *J Theor Biol* **218**, 1–11 (2002).

850 37. Attanasi, A. *et al.* Collective Behaviour without Collective Order in Wild Swarms of Midges.
851 *PLoS Comput Biol* **10**, (2014).

852 38. Gautrais, J. *et al.* Deciphering Interactions in Moving Animal Groups. *PLoS Comput Biol* **8**,
853 e1002678 (2012).

854 39. Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks.
855 *Nature 2010* **464**:7290 **464**, 890–893 (2010).

856 40. Parrish, J. K. & Edelstein-Keshet, L. Complexity, Pattern, and Evolutionary Trade-Offs in
857 Animal Aggregation. *Science (1979)* **284**, 99–101 (1999).

858 41. Sumpter, D. J. T., Krause, J., James, R., Couzin, I. D. & Ward, A. J. W. Consensus Decision
859 Making by Fish. *Current Biology* **18**, 1773–1777 (2008).

860 42. Bialek, W. *et al.* Statistical mechanics for natural flocks of birds. *Proceedings of the National*
861 *Academy of Sciences* **109**, 4786–4791 (2012).

862 43. Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-
863 making in animal groups on the move. *Nature* **433**, 513–516 (2005).

864 44. Bode, N. W. F., Franks, D. W. & Wood, A. J. Limited interactions in flocks: Relating model
865 simulations to empirical data. *J R Soc Interface* **8**, 301–304 (2011).

866 45. Jhawar, J. *et al.* Noise-induced schooling of fish. *Nature Physics* **2020 16:4** **16**, 488–493
867 (2020).

868 46. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the
869 hidden networks of interaction in mobile animal groups allows prediction of complex
870 behavioral contagion. *Proc Natl Acad Sci U S A* **112**, 4690–4695 (2015).

871 47. Sanderson, M. I., Neretti, N., Intrator, N. & Simmons, J. A. Evaluation of an auditory model
872 for echo delay accuracy in wideband biosonar. *J Acoust Soc Am* **114**, 1648–1659 (2003).

873 48. Neretti, N., Sanderson, M. I., Intrator, N. & Simmons, J. A. Time-frequency model for echo-
874 delay resolution in wideband biosonar. *J Acoust Soc Am* **113**, 2137–2145 (2003).

875 49. Fujioka, E. *et al.* Three-Dimensional Trajectory Construction and Observation of Group
876 Behavior of Wild Bats During Cave Emergence. *Journal of Robotics and Mechatronics* **33**,
877 556–563 (2021).

878 50. Theriault, D. *et al.* Reconstruction and Analysis of 3D Trajectories of Brazilian Free-Tailed
879 Bats in Flight. *CS Department, Boston University* (2010).

880 51. Tsoar, A. *et al.* Large-scale navigational map in a mammal. *Proc Natl Acad Sci U S A* **108**,
881 E718–E724 (2011).

882 52. Jensen, M. E., Moss, C. F. & Surlykke, A. Echolocating bats can use acoustic landmarks for
883 spatial orientation. *Journal of Experimental Biology* **208**, 4399–4410 (2005).

884 53. Jones, T. K. & Conner, W. E. The jamming avoidance response in echolocating bats.
885 *Commun Integr Biol* **12**, 10–13 (2019).

886 54. Sabol, B. M. & Hudson, M. K. Technique using thermal infrared-imaging for estimating
887 populations of gray bats. *J Mammal* **76**, (1995).

888 55. Betke, M. *et al.* Thermal Imaging Reveals Significantly Smaller Brazilian Free-Tailed Bat
889 Colonies Than Previously Estimated. *J Mammal* **89**, 18–24 (2008).

890 56. Tressler, J. & Smotherman, M. S. Context-dependent effects of noise on echolocation pulse
891 characteristics in free-tailed bats. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol*
892 **195**, 923–934 (2009).

893 57. Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by Insect-Eating Bats: We define four
894 distinct functional groups of bats and find differences in signal structure that correlate with
895 the typical echolocation tasks faced by each group. *Bioscience* **51**, 557–569 (2001).

896 58. Kalko, E. K. V. Insect pursuit, prey capture and echolocation in pipistrelle bats
897 (Microchirptera). *Anim Behav* **50**, 861–880 (1995).

898 59. Schnitzler, H., Kalko, E. & Miller, L. How the Bat, *Pipistrellus Kuhli*, Hunts for Insects.
899 *Animal Sonar* 619–623 (1988).

900 60. Taub, M. & Yovel, Y. Segregating signal from noise through movement in echolocating
901 bats. *Sci Rep* **10**, 1–10 (2020).

902 61. Taub, M., Mazar, O. & Yovel, Y. Pregnancy-related sensory deficits might impair foraging
903 in echolocating bats. *BMC Biology* 2023 **21**:1 1–9 (2023).

904 62. Fawcett, K. & Ratcliffe, J. M. Clutter and conspecifics: a comparison of their influence on
905 echolocation and flight behaviour in Daubenton's bat, *Myotis daubentonii*. *J Comp Physiol
906 A Neuroethol Sens Neural Behav Physiol* **201**, 295–304 (2015).

907 63. Grodzinski, U., Spiegel, O., Korine, C. & Holderied, M. W. Context-dependent flight speed:
908 Evidence for energetically optimal flight speed in the bat *Pipistrellus kuhlii*? *Journal of
909 Animal Ecology* **78**, 540–548 (2009).

910 64. Yovel, Y., Melcon, M. L., Franz, M. O., Denzinger, A. & Schnitzler, H. U. The voice of
911 bats: How greater mouse-eared bats recognize individuals based on their echolocation calls.
912 *PLoS Comput Biol* **5**, e1000400 (2009).

913 65. Kazial, K. A., Burnett, S. C. & Masters, W. M. Individual and Group Variation in
914 Echolocation Calls of Big Brown Bats, *Eptesicus Fuscus* (Chiroptera: Vespertilionidae) . *J
915 Mammal* **82**, 339–351 (2001).

916 66. Kazial, K. A., Kenny, T. L. & Burnett, S. C. Little brown bats (*Myotis lucifugus*) recognize
917 individual identity of conspecifics using sonar calls. *Ethology* **114**, 469–478 (2008).

918 67. Yovel, Y., Franz, M. O., Stilz, P. & Schnitzler, H. U. Complex echo classification by echo-
919 locating bats: a review. *Journal of Comparative Physiology A* **197**, 475–490 (2010).

920 68. Schnitzler, H. U., Moss, C. F. & Denzinger, A. From spatial orientation to food acquisition
921 in echolocating bats. *Trends Ecol Evol*, 386–394 (2003).

922 69. Ratcliffe, J. M. *et al.* Conspecifics influence call design in the Brazilian free-tailed bat,
923 *Tadarida brasiliensis*. *Can J Zool* **82**, 966–971 (2004).

924 70. Beetz, M. J. & Hechavarria, J. C. Neural Processing of Naturalistic Echolocation Signals in
925 Bats. *Front Neural Circuits* **16**, 899370 (2022).

926 71. Yovel, Y. & Ulanovsky, N. Bat Navigation. *The Curated Reference Collection in
927 Neuroscience and Biobehavioral Psychology* 333–345 (2017).

928 72. Moss, C. F. & Surlykke, A. Probing the natural scene by echolocation in bats. *Front Behav
929 Neurosci* **4**, 33 (2010).

930 73. Moss, C. F. & Surlykke, A. Auditory scene analysis by echolocation in bats. *Citation: The
931 Journal of the Acoustical Society of America* **110**, 2207 (2001).

932 74. Chili, C., Xian, W. & Moss, C. F. Adaptive echolocation behavior in bats for the analysis of
933 auditory scenes. *Journal of Experimental Biology* **212**, 1392–1404 (2009).

934 75. Salles, A., Diebold, C. A. & Moss, C. F. Echolocating bats accumulate information from
935 acoustic snapshots to predict auditory object motion. *Proc Natl Acad Sci U S A* **117**, 29229–
936 29238 (2020).

937 76. Kothari, N. B., Wohlgemuth, M. J., Hulgard, K., Surlykke, A. & Moss, C. F. Timing matters:
938 Sonar call groups facilitate target localization in bats. *Front Physiol* **6**, 168 (2014).

939 77. Corcoran, A. J. & Moss, C. F. Sensing in a noisy world: lessons from auditory specialists,
940 echolocating bats. *Journal of Experimental Biology* **220**, 4554–4566 (2017).

941 78. Munoz, N. E. & Blumstein, D. T. Multisensory perception in uncertain environments.
942 *Behavioral Ecology* **23**, 457–462 (2012).

943 79. Daria Genzel, Yossi Yovel & Michael M. Yartsev. Neuroethology of bat navigation. *Current
944 Biology* **28**, R997–R1004 (2018).

945 80. Boonman, A., Bar-On, Y., Cvikel, N. & Yovel, Y. It's not black or white-on the range of
946 vision and echolocation in echolocating bats. *Front Physiol* **4**, 248 (2013).

947 81. Danilovich, S. & Yovel, Y. Integrating vision and echolocation for navigation and perception
948 in bats. *Sci Adv* **5**, eaaw6503 (2019).

949 82. Harten, L., Katz, A., Goldshtain, A., Handel, M. & Yovel, Y. The ontogeny of a mammalian
950 cognitive map in the real world. *Science (1979)* **369**, 194–197 (2020).

951 83. Prat, Y. & Yovel, Y. Decision making in foraging bats. *Curr Opin Neurobiol* **60**, 169–175
952 (2020).

953 84. Barchi, J. R., Knowles, J. M. & Simmons, J. A. Spatial memory and stereotypy of flight
954 paths by big brown bats in cluttered surroundings. *Journal of Experimental Biology* **216**,
955 1053–1063 (2013).

956 85. Geva-Sagiv, M., Las, L., Yovel, Y. & Ulanovsky, N. Spatial cognition in bats and rats: from
957 sensory acquisition to multiscale maps and navigation. *Nature Reviews Neuroscience* **2015
958 16:2** **16**, 94–108 (2015).

959 86. Gunier, W. J. & Elder, W. H. Experimental Homing of Gray Bats to a Maternity Colony in
960 a Missouri Barn. *American Midland Naturalist* **86**, 502 (1971).

961 87. Garnier, S., Gautrais, J. & Theraulaz, G. The biological principles of swarm intelligence.
962 *Swarm Intelligence* **1**, 3–31 (2007).

963 88. Fischer, D., Mostaghim, S. & Albantakis, L. How swarm size during evolution impacts the
964 behavior, generalizability, and brain complexity of animats performing a spatial navigation
965 task. in *Proceedings of the Genetic and Evolutionary Computation Conference* 77–84
966 (2018).

967 89. Schnitzler, H.-U., Kalko, E., Miller, L. & Surlykke, A. The echolocation and hunting
968 behavior of the bat, *Pipistrellus kuhli*. *Journal of Comparative Physiology A* **161**, 267–274
969 (1987).

970 90. Wilson, W. W. & Moss, C. F. Sensory-motor behavior of free-flying FM bats during target
971 capture. *Advances in the study of echolocation in bats and dolphins* 22–27 (2004).

972 91. Schnitzler, H. U. & Kober, R. Information in sonar echoes of fluttering insects available for
973 echolocating bats. *Journal of the Acoustical Society of America* **87**, 882–896 (1990).

974 92. Kuc, R. Sensorimotor model of bat echolocation and prey capture. *J Acoust Soc Am* **96**,
975 1965–1978 (1994).

976 93. Vanderelst, D. & Peremans, H. Modeling bat prey capture in echolocating bats : The
977 feasibility of reactive pursuit. *J Theor Biol* **456**, 305–314 (2018).

978 94. Simmons, J. A. & Kick, S. A. Interception of Flying Insects by Bats. *Neuroethology and*
979 *Behavioral Physiology* 267–279 (1983).

980 95. Griffin, D. R., Webster, F. A. & Michael, C. R. The echolocation of flying insects by bats.
981 *Anim Behav* **8**, 141–154 (1960).

982 96. Hiryu, S., Hagino, T., Fujioka, E., Riquimaroux, H. & Watanabe, Y. Adaptive echolocation
983 sounds of insectivorous bats, *Pipistrellus abramus*, during foraging flights in the field. *J*
984 *Acoust Soc Am* **124**, EL51–EL56 (2008).

985 97. Hagino, T., Hiryu, S., Fujioka, S., Riquimaroux, H. & Watanabe, Y. Adaptive SONAR
986 sounds by echolocating bats. in *2007 Symposium on Underwater Technology and Workshop*
987 *on Scientific Use of Submarine Cables and Related Technologies* 647–651 (2007).

988 98. Surlykke, A., Ghose, K. & Moss, C. F. Acoustic scanning of natural scenes by echolocation
989 in the big brown bat, *Eptesicus fuscus*. *Journal of Experimental Biology* **212**, 1011–1020
990 (2009).

991 99. Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S. & Moss, C. F. Echolocating bats use a
992 nearly time-optimal strategy to intercept prey. *PLoS Biol* **4**, 865–873 (2006).

993 100. Mazar, H. *Radio Spectrum Management: Policies, Regulations, Standards and Techniques*.
994 (John Wiley & Sons, Ltd, 2016).

995 101. H. T. Friis. A Note on a Simple Transmission Formula. *Proceedings of the IRE* **34**, 254–256
996 (1946).

997 102. Rahman, F. U. *et al.* Occurrence of *Rhinopoma microphyllum* (Brunnich, 1782) in Khyber
998 Pakhtoonkhawa, Pakistan. *J Anim Plant Sci* **25**, 450–453 (2015).

999 103. Boonman, A. M., Parsons, S. & Jones, G. The influence of flight speed on the ranging
1000 performance of bats using frequency modulated echolocation pulses. *J Acoust Soc Am* **113**,
1001 617 (2003).

1002 104. Boonman, A. & Ostwald, J. A modeling approach to explain pulse design in bats. *Biol*
1003 *Cybern* **97**, 159–172 (2007).

1004 105. Weißenbacher, P. & Wiegrefe, L. Classification of virtual objects in the echolocating bat,
1005 *Megaderma lyra*. *Behavioral Neuroscience* **117**, 833–839 (2003).

1006 106. Saillant, P. A., Simmons, J. A. & Dear, S. P. A computational model of echo processing and
1007 acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation
1008 and transformation receiver. *Citation: The Journal of the Acoustical Society of America* **94**,
1009 2691 (1993).

1010 107. Popper, A. N. & Fay, R. R. *Hearing by Bats*. (Springer-Verlag, 1995).

1011 108. Blauert, J. *Spatial Hearing: The Psychophysics of Human Sound Localization (Rev. Ed.)*.
1012 (MIT press, 1997).

1013 109. Mohl, B. & Surlykke, A. Detection of sonar signals in the presence of pulses of masking
1014 noise by the echolocating bat, *Eptesicus fuscus*. *Journal of Comparative Physiology A* 119–
1015 124 (1989).

1016 110. Simmons, J. A. *et al.* Acuity of horizontal angle discrimination by the echolocating bat,
1017 *Eptesicus fuscus*. *J Comp Physiol* **153**, 321–330 (1983).

1018 111. Fay, R. R. *Hearing by Bats. Journal of Chemical Information and Modeling* vol. 5 (Springer,
1019 New York, NY, New York, 1995).

1020

1021

1022

1023

1024

1025