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Abstract

Bats face a complex navigation challenge when emerging from densely populated roosts, where
vast numbers take off at once in dark, confined spaces. Each bat must avoid collisions with walls
and conspecifics while locating the exit, all amidst overlapping acoustic signals. This crowded
environment creates the risk of acoustic jamming, in which the calls of neighboring bats interfere
with echo detection, potentially obscuring vital information. Despite these challenges, bats
navigate these conditions with remarkable success. Although bats have access to multiple sensory
cues, here we focused on whether echolocation alone could provide sufficient information for
orientation under such high-interference conditions. To explore whether and how they manage this
challenge, we developed a sensorimotor model that mimics the bats’ echolocation behavior under
high-density conditions. Our model suggests that the problem of acoustic jamming may be less
severe than previously assumed. Frequent calls with short inter-pulse intervals (IPI) increase the
sensory input flow, allowing integration of echoic information across multiple calls. When
combined with simple movement-guidance strategies—such as following walls and avoiding
nearby obstacles—this accumulated information enables effective navigation in dense acoustic
environments. Together, these findings demonstrate a plausible mechanism by which bats may
overcome acoustic interference and underscore the role of signal redundancy in supporting robust
echolocation-based navigation. Beyond advancing our understanding of bat behavior, they also

offer valuable insights for swarm robotics and collective movement in complex environments.
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Introduction

In many bat species individuals dwell together in caves (or similar roosts), forming large colonies
with tens to several millions of individuals'? . Each evening, at approximately the same time, the
bats take off from their roost, navigating through its passages toward the exit. The high density of
bats flying simultaneously in great proximity poses many challenges for orientation in such a
crowded and noisy environment. Flying while avoiding collisions, often in a pitch-black cave,
demands the continuous detection and localization of both obstacles and nearby bats**. Employing
echolocation, bats emit strong ultrasonic signals and interpret the reflected echoes to perceive their
surroundings®. The reception of neighbors’ loud calls, which share similar acoustic features with
their own calls, can potentially hinder the bats’ ability to detect the faint echoes reflected off the
walls and the surrounding bats>®. We examined whether bats could rely solely on echolocation to

exit the roost even during such a chaotic ‘rush hour’.

The question of how bats cope with acoustic interference — i.e., the masking of potential echoes
by conspecific signals — has been extensively researched using playback experiments, field
observations, on-body tags, and computational simulations”*”. However, much of this research
has focused on foraging bats in small groups®>®1618-20 The challenges bats encounter during roost
exits (e.g., cave exits) differ markedly from those encountered during group foraging. Bat density
during roost exits is significantly higher, and bats need to detect and follow static walls or
obstacles, which produce loud echoes, rather than small, sporadic prey items that generate faint
echoes?’. Their flight during exits is also more directional and involves avoiding collisions with
conspecifics, in contrast to the erratic hunting maneuvers typically observed while foraging.
Echolocation studies during dense collective movement are scarce*®?225 likely due to the
complexities in recording separate echolocation calls and tracking individual flights within the

swarm.

While collective movement has been extensively studied in various species, such as insect
swarming, fish schooling, and bird murmuration?6-32, as well as in swarm robotics, where agents
perform tasks such as coordinated navigation and maze-solving33-35, most studies have focused
on movement algorithms that assume full detection of neighbors®6-43. Some models have

incorporated limited interaction rules where individuals respond to only one or a few neighbors
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due to sensory constraints*4> However, fewer studies have explicitly examined how sensory

interference, occlusion, and noise influence decision-making and affect collective movement?®.

The present study addresses these gaps by introducing an agent-based sensorimotor model based
on the well-documented echolocation capabilities of bats, simulating multiple bats pathfinding
their way out of a cave-like structure. We modeled the echolocation behavior of two insectivorous
bat species: Pipistrellus kuhlii (PK), which roosts in abandoned buildings and frequently navigates
through conspecific-dense, cluttered corridors and the cave dwelling Rhinopoma microphyllum
(RM) which emerges from its roosts with thousands of individuals simultaneously. These two
species differ in their echolocation signals - PK echolocation signals are characterized by a wider
bandwidth and a higher terminal frequency than RM calls. We quantified the performance of an
individual bat flying among conspecifics, demonstrating that even a relatively simple sensorimotor
algorithm can facilitate successful orientation in such complex environments. The modeling
approach enabled us to explore how various biological and ecological factors influence

successful navigation under such challenging conditions.

Results

Our model was designed with conservative assumptions regarding bats’ sensing, movement, and
sensorimotor integration, aiming to underestimate their capabilities and thereby establish a lower
bound on their actual performance. Real bats likely outperform the model’s predictions. In our 2D
simulations’, each bat emits sound signals and receives echoes reflected from the roost walls and
other bats, while also encountering masking signals caused by calls from conspecifics. These
masking signals can interfere and completely eliminate echo detection (which we refer to as
jamming) or cause echo localization errors. After estimating the distance and direction of each
detected reflector, the bat adjusts its echolocation parameters and maneuvers to find the exit while
simultaneously avoiding collisions. The bats dynamically adjust their echolocation parameters—
including call rate, duration, and frequency range—based on the estimated distance to obstacles,
following the well-documented transition between search, approach, and buzz phases observed in
echolocating bats (see’ and Methods). Their reception was modeled using a biologically inspired
filter-bank receiver comprising 80 gammatone channels”4"#8, Each bat adjusted its flight following
a simple pathfinding algorithm based solely on the estimated locations of the detected reflectors
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92  (see Methods, Supplementary Figure 1, and Supplementary Movie 1 for additional details). The
93  bats had to exit a roost designed as a corridor (14.5 m long x 2.5 m wide), with a right-angle turn
94  located 5.5 m before the exit (Figure 1A). Additionally, an obstacle (1.25 m wide) was situated
95  2.25 m in front of the opening. The simulated bats initiated their flight from the far end of the
96  corridor, within a randomly selected 1.5 x 2 m? area, taking off in the general direction of the exit

97  (£30 degrees), without prior knowledge of the roost's structure.

98  The sensory model accounted for six types of acoustic signals: (1) the bat's own calls, (2) echoes

99  from conspecifics, (3) echoes from walls in response to the bat's own calls (i.e., desired wall
100  echoes), (4) echoes from conspecific calls reflected off other bats, (5) echoes from conspecific
101  calls reflected off walls, and (6) the conspecific calls themselves. In the baseline model, bats were
102  assumed to reliably distinguish between all these signal types. In contrast, the confusion model
103  described below specifically tested the impact of failing to distinguish between desired wall echoes
104  (3) and wall echoes generated by conspecific calls (5), while preserving the bat’s ability to identify
105 all other signal types. In brief, the bat responded to echoes as follows (see Methods and
106  Supplementary Figure 1 for details): If an obstacle or a conspecific was detected in front of the bat
107  and was too close, the bat would maneuver to avoid a collision. Otherwise, for exit-seeking, the
108  bat would follow the contour of the walls by steering toward the farthest detected obstacle ahead.
109 If agap greater than 0.5 m was identified between adjacent reflectors, the bat directed its trajectory

110  toward the center of the gap.

111 The ability of the bats to exit the roost within 15 sec was evaluated for different group sizes, from
112  asingle bat and up to 100 individuals. For simplicity, we will refer to the initial density at the
113 cave’s far end as the number of bats per 3m? (i.e., for groups of 100 bats, the density is 100
114  bats/3m?, or 33.3 bats/m?). The bat densities we tested were chosen to reflect the typical range of
115  bat densities observed in natural caves during emergence events®#%%0, Key model parameters,
116  such as the sensory integration window, object target strength, echolocation parameters, and flight
117  velocity (see Table 1), were manipulated and their impact on the exit performance was analyzed.
118  To explicitly quantify the effect of sensory masking vs. the effect of collision avoidance (i.e.,
119  spatial interference) only, we turned the acoustic interference on and off to measure its impact.
120  Each scenario was repeated as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12;
121 40 bats: 12; 100 bats: 6 (see Table 1), while misidentification rate, multi-call clustering, and
122 wall/conspecific target strength were tested only up to 40 bats (see Table 1).
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124 Figure 1: The sensorimotor model. (A) Top view of the cave with three bats’ trajectories. The focal bat is
125 shown in black. All bats’ flight trajectories are displayed while the bats’ moment-to-moment decisions are
126 represented by the colored lines: blue - random flight, yellow — collision avoidance, light green — wall-
127 following, turquoise — movement toward a wall gap (see panel D for details). Green squares depict reflectors
128 detected by the focal bat along its route. (B) A zoomed-in view of the marked rectangular area in Panel A,
129 where the focal bat (black) emitted one echolocation call (black) and received echoes from the cave walls
130 (green) and from two other bats (blue). It also received conspecifics’ calls (red) and their reflection from the
131 cave walls (orange), as well as the reflections from other bats (pink). Green squares indicate points that were
132 detected by the focal bat from this call and red x’s indicate missed points due to acoustic masking (i.e.,
133 jammed reflectors). The locations of the detected reflectors (green squares) are marked according to their
134 localization by the bat (with simulated errors). The lines near the bats depict their flight direction. (C) The
135 acoustic scene received by the focal bat is as depicted in B, including the emitted call and all received signals
136 (colors as in panel B). (C1) The time-domain plot displays the envelope of signals, encompassing the emitted
137 call and the received signals: the desired echoes from the walls and conspecifics; the calls of other bats; the
138 echoes returning from conspecific calls and reflected off the walls and off other bats. Notably, in this example,
139 some of the desired wall-echoes are jammed by stronger self-echoes reflected from nearby conspecifics. (C2)
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140 The spectrogram of all the received signals presented in C1; for clarity, the emitted call is not depicted. (C3)
141 The responses of the active channels of the cochlear filter bank (FB channel) after de-chirping. Each channel
142 is represented by its central frequency on the y-axis. Each black dot represents the timing of a reaction that
143 was above the detection threshold in each channel. Note that early reactions in low-frequency channels
144 (marked by a yellow arrow) result from the stimulation of those channels caused by the higher frequencies
145 of the downward FM chirp. However, most of these stimulations do not reach the detection threshold and are
146 therefore not detected (see Methods). (C4) The detections of each channel are convolved with a Gaussian
147 kernel, summed, and compared with the detection threshold (dotted red line). Colored asterisks mark peaks
148 that were classified as successful detections—those identified in both the interference-free and full detection
149 conditions (see Methods for details). Other peaks may originate from masking signals or overlapping echoes
150 that did not meet the detection criteria (colors of the sources are as defined above). Panel D depicts the
151 pathfinding algorithm used by the bat. The algorithm involves a correlated-random flight during the search
152 phase (blue), collision avoidance (yellow), flying along the wall at a constant distance (green), and flying
153 toward the center of a gap between obstacles as an indicator of a possible exit (cyan). After each echolocation
154 call, the bat awaits an IPI (Inter Pulse Interval) period before processing the detections, adjusting flight and
155 echolocation parameters, and emitting the next call. Based on the received signals, it then modifies its next
156 call design and adjusts its direction and speed accordingly. For a detailed diagram of the complete
157 sensorimotor process see Supplementary Figure 1.

158

159  Bats find their way out of the cave even at high conspecific densities:

160  We first examined how bat density affects bats’ ability to exit the cave, both alone and in a group.
161  The probability of exiting the cave within 15 seconds—defined as the proportion of bats that
162  successfully exited within this time frame—was significantly reduced at higher densities (Figure
163  2A, see Supplementary Movie 1 for a view of the bats’ movement, p<10%°, t =-23, DF=4077,
164  GLM, see details in Table 1). In trials in which a single bat was flying alone, it successfully exited
165 the cave in 100% of the cases. Even without sensory interference, the probability of exiting
166  decreased significantly from 100% to 86%z1.4% and 91%=+1.7% at densities of 100 PKs/3m? and
167 100 RMs/3m?, respectively (mean + s.e.). When acoustic interference was added, the exit
168  probability further decreased to 63%z=1.4% and 67%z=1.4% for 100 PKs and RMs, respectively
169  (see Figure 2A).

170  The difference in exit probability between the two species was not significant (p=0.08, t =1.74,
171  DF=4077, GLM as above, Figure 2A). Similarly, the difference in echolocation parameters
172  Dbetween the two species did not affect the collision rate with the walls (with a maximum of 0.29
173 and 0.3 collisions per bat per second for PK and RM, respectively, with 100 bats (p=0.63, t =-0.48,
174  DF=4077, GLM, Figure 2C, see details in Table 1). To quantify sensory interference, we defined

175 ajammed echo as an echo entirely missed due to masking. The jamming probability, which was
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176  calculated as the number of jammed echoes divided by the total number of self-echoes, was
177  significantly higher for RM compared to PK. The maximum difference between the two models
178  was 14.3% at a density of 10 bats, with a smaller difference of 9.8% observed at 100 bats (p<10°
179 10 t=6.56, DF=4077, GLM, Figure 2D, see details in Table 1). Accordingly, PK demonstrated a
180  minor but significant advantage in detecting the cave walls (p=0.024, t =-2.25, DF=4077, GLM,
181  Figure 2E, see details in Table 1). With 100 bats flying together, the probability of detecting a wall
182  echo at a distance of 1 m in a single call was around 50% and 46% for PK and RM, respectively.
183  Despite this minor disadvantage in detection, RM bats exhibited a better time-to-exit average than
184  PK bats, being 0.5 seconds faster to exit (p=0.0005, t =-4.06, DF=3533, for n=40 bats, Figure 2B).
185  Additionally, RM bats experienced a significantly higher probability of their self-generated
186  echoes, reflected off conspecifics, being jammed (p = 0.00016, t = 3.8, DF = 3593, GLM; see
187  details in Table 1).
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190 Figure 2: Exit performance of P. Kuhlii (PK) and R. Microphyllus (RM). (A) Sensory interference
191  significantly impaired the probability of exiting the cave (compare dashed lines with continuous lines). The
192 probability of a successful exit also declined as the number of bats increased, with no significant difference
193 observed between the species when masking interference was applied. The insert shows the spectrograms of the
194 echolocation calls of PK (top) and RM (bottom). (B) The time-to-exit, which was calculated for successful trials
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195 only, and (C) the collision rate with the walls both increased as a function of the number of bats. (D) The
196 probability of jamming significantly increased to about 55% and 63% with 100 bats for PK and RM, respectively.
197  (E) The detection probability of a wall reflector at one meter or less in front of a bat decreased as a function of
198  the number of bats. In panels (A-E), circles represent means and bars represent standard errors (see details in
199  Table 1). Asterisks indicate significant differences between the lines in each panel.

200  Multi-call integration improves exit performance: We next examined whether bats improve their
201  performance when integrating information from several consecutive calls. The integration window
202  determines the number of previous calls the bat uses at each step to guide its next movement
203  decision (see Methods and Supplementary Figure 2A). In the basic multi-call integration model,
204  detections from the previous calls — by default the last five — were stored in an allocentric (x-y)
205  reference frame, with each detection treated independently as a potential obstacle without
206  clustering or filtering. At each decision, the bat takes all of these detections into account when
207  guiding its movement and echolocation. The probability of exiting the roost significantly increased
208  when increasing the size of the integration window for all bat densities (p<107°, t =28.5,
209 DF=10197, GLM, Figure 3A, see details in Table 1). For example, at a density of 40 bats/3m?, the
210  exit probability improved from 20%, to 75%, and to 87% as the window size increased from one,
211  tothree, and to 10 previous calls, respectively. In addition, increasing the window size resulted in
212 asignificant improvement in the time-to-exit and the avoidance of wall collisions (p<102°, t =-
213 12.8, DF=7661; p<107° t =-46.5, DF=10197, respectively, GLM, see details in Table 1). With
214 100 bats, the collision rate decreased by a factor of 2 from 0.53 to 0.25 collisions per second as the
215  window increased from 1 to 10 calls. The size of the integration window had no significant effect
216  on the jamming probability (p=0.37, t =0.9, DF=10197, GLM, see details in Table 1).

217  Exit probability was maximal at an intermediate flight-speed: We observed a significant and non-
218  linear effect of the flight speed of the bats on the performance, as shown in Figure 1Figure 3B
219  (p<100 t=-29.9, DF=10196, GLM, see details in Table 1). The exit probability increased with
220  flight speed until it reached a maximum at 6-8 m/s and then declined rapidly. This was the case
221  forall bat densities, with the maximal exit probability ranging between 65% to 99%. At the optimal
222  velocity, the time-to-exit was also minimal. However, the collision rate increased monotonically

223  with speed, with a steep incline above the optimal speed.

224
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226 Figure 3: Exit performance as a function of key sensorimotor parameters. (A) The effect of the
227 integration window on the probability of exiting the roost, the time-to exit, the rate of collisions with the
228 walls, and the probability of jamming (from left to right, respectively). Each colored line shows the trend as
229 a function of the window-size for different bat densities, with each color representing a specific density. Note
230 that a window size of 0 indicates that only the most recent call is used in the bat’s decision-making, without
231 integrating detections from previous calls. (B) The effect of the nominal flight speed of the bats, with panels
232 and line-colors as in panel A. An optimal speed of approximately 6 to 8 m/sec can be observed for all densities
233 above one bat. (C) The effect of call intensity on exit performance, panels as in (A). In all panels, circles
234 represent means and bars represent standard errors. Error bars depicting standard errors are presented but are
235 very small due to the large number of simulation repetitions. See Table 1 for the number of simulated bats.

236  Call intensity had only a minor effect on exit performance and only at high bat densities: For
237  low bat densities (<40 bats), call intensity did not have a significant impact on either exit
238  probability or collision rate (Figure 3C, p=0.89, t =0.13, DF=5757; p=82, t -0.21, DF=5757,

239  respectively, GLM, see details in Table 1). Call intensity affected exit performance only when the
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240  intensity dropped to 100 dB-SPL (@ 0.1m) and only at a high bat density of 100 bats/3m? (Figure
241  3Figure 3 C). In this scenario, the exit probability declined from approximately 60% to 49.5%
242  (p=0.003, F = 8.45, DF = 2396, One-way ANOVA with 'hsd' post hoc test), and the collision rate
243 increased from 0.3 to 0.35 collisions per second (p<3-10°, F = 22.18, DF = 2396). Notably, this
244 low intensity is below the typical search-call intensity of most echolocating bats. At the same bat
245  density (100 bats/3m?), further increasing the call intensity to above 100dB-SPL had no significant
246  effect on either exit probability (p=0.6) or collision rate (p=0.07). Calling louder also slightly, but
247  significantly, decreased the jamming probability at all bat densities, with a decrease of 3.5%+8%
248 10 5.5%+5% (mean % s.e.) (p=0.02, t =-2.26, DF=8157, GLM, see Table 1).

249  While confusion between the desired echoes and those from conspecific calls may significantly
250 impair exit performance, multi-call clustering helps to mitigate this. We next addressed the
251 challenge of echo classification, assuming that a bat can differentiate an echo resulting from its
252  own calls from echoes resulting from the calls of other bats. To examine this assumption, we tested
253  another model, referred to as the confusion model, in which bats responded similarly both to wall
254  echoes returning from their own emissions and to those from conspecific emissions, treating all as
255  their own echoes. This confusion significantly decreased exit performance for all bat densities
256  (above one bat). The probability of a successful exit for a density of 40 bats/3m? dropped from
257  83.3+2.4%t0 14.6+2.3% (p<<1071°, t =-20.7, DF=2877, GLM, see details in Table 1), the exit time
258 increased from 7.6+0.18 to 9.3+0.2 seconds (p<<1071°, t =15.5, DF=2157, GLM), and the collision
259 rate increased significantly from 0.2+0.007 to 0.8+0.013 collisions per second (p<<107°, t =-30,
260 DF=28777, GLM, see Figure 4, red and yellow lines).

261  To further examine whether this substantial decrease in performance could be mitigated even
262  without improving echo identification, we tested an enhanced integration model that, in addition
263  to extending the number of calls integrated, clustered spatially close detections, removed outliers,
264  and estimated wall directions based on grouped reflectors (see Methods and Supplementary Figure
265  2B). This *multi-call clustering’ significantly improved performance, but exit probability and
266  time-to-exit still remained significantly lower than without echo-confusion: exit probability =
267  58+3% in comparison to 83.3+2.4% without echo confusion (p<<10°,t=18.3, DF=28777, GLM),
268  time-to-exit =9.3+0.2 seconds (p<<107°, t =-13.7, DF=1996, GLM), see Figure 4, yellow line. The

269  results above are reported for a density of 40 bats/3m?. Interestingly, the multi-call clustering
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270  restored the collision rate to the levels observed under the "No Confusion"” condition (p=0.68, t =-
271  0.42, DF=2877, GLM, see Figure 4C, dark-purple and red lines).
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272
273 Figure 4: The impact of confusion on performance. The figure illustrates the impact of classification
274 confusion on roost-exit performance under various conditions. Blue lines depict trials with masking, while
275 assuming that bats can distinguish between echoes from their own calls and those of conspecifics (referred
276 to as "No Confusion™). Red lines depict performance where confusion between echoes is assumed. Yellow
277 lines depict performance under the confusion condition, with the added capability of multi-call clustering
278 in a short-term working memory (referred to as “confusion with mitigation”, see text for further details). In
279 all panels, circles represent means and bars indicate standard errors. (A) The probability of exiting the roost
280 significantly decreased with masking and confusion. In conditions with confusion and no aggregation
281 process, only 15% of bats successfully exited the roost, at a density of 40 bats/3m?. Multi-call clustering
282 partially mitigated the confusion effect but did not eliminate it. (B) Bats with the ability to distinguish
283 between echoes demonstrated significantly shorter exit times than those experiencing confusion. Note that
284 time-to-exit refers only to successful attempts. (C) The collision rate with walls was highest for bats
285 experiencing both masking and confusion but decreased significantly when without confusion. Multi-call
286 clustering restored performance to the "No Confusion" condition, reducing collision rates accordingly, at
287 densities between 1 to 40 bats/3m?.
288

289  Effect of Wall and Conspecific Target Strengths on Exit Performance: Increasing the wall
290 target strength significantly enhanced navigation performance (Supplementary Figure 3, Table 1),
291  improving exit probability by up to 64% and reducing time-to-exit by up to 2.8 seconds (p <<
292  107'9). Stronger wall echoes improved environmental awareness but also slightly increased

293  masking of desired conspecific signals.
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294  In contrast, changes in conspecific target strength had a much smaller effect (Supplementary
295  Figure 4, Table 1), with only minor improvements in detection and collision rates, and no
296  significant impact on exit probability. This likely reflects the fact that both desired and masking
297  signals scale similarly with conspecific reflectivity. Overall, the model showed low sensitivity to
298 variations in conspecific target strength.
299
Key parameter Tested Default Effect Size on Explained Variable GLM
range value
: : : - — Explaining
Exit prob. Time-to-exit | Jamming- | Obs. Collision factors
(%) (sec) prob. (%) (sect)
Number Of Bats® [1, 2, 5, 10,]|All -0.37/bat* 0.044/bat * 0.54/bat* 0.25/bat* Number of bats
20, 40,100] |Values |[63:100] [4.6:8.9] [0:54] [0.05:0.3]
Bat species [PK, RM] PK 45 -0.4* 9* 0.01 Number of bats,
[63:67] [8.5:8.9] [54:63] [0.29:03]. bat species
Integration Window (#) |[0,1,3,5,10] |5 0.41/call* -0.16/call* 0.01/call 0.27/call Number of bats,
[29:70] [9.2:7.6] [54:55] [0.25:0.53] integration
window size
Nominal flight speed [2,4,6,8,10] |6 6/(1m/s), -1/(1m/s), 1.4/(Im/s)* 0.18/(Im/s)* | Number of bats,
(m/s) -12/(1m/s)* 1/(Am/s)* flight speed,
[15:63] [6:9.6] [55:65] [0.07:1.3] square of flight
speed
Call level [100,110,120, 120 13v -0.5 0.5/10dB* 0.07v Number of bats,
(dB-SPL, @ 0.1m) 130] [50:63] [7.9:8.4] [63:58] [0.29:0.36] call level
Misidentification ¢ [Yes/No] N -69* 1.3* 30* 0.6* Number of bats,
[14:83] [7.6:8.9] [50:80] [0.2:0.8] With and without
confusion
Misidentification and | [Yes/No] N -23* 1.7* 29* -0.02* Number of bats,
multi-call clustering © [58:83] [7.6:9.3] [50:79] [0.18:0.2] With and without
multi-call
clustering
Masking [Yes/No] Y 23* 0.8* 54* 0.03 Number of bats,
[63:86] [8.0:8.8] [0:54] [0.26:0.29] | With and without
masking
Wall target strength [-33, -23, -23 16/10dB * 0.7/10dB * -8.5/10dB * 0.07/10dB * Number of bats,
(dB) =@ -13, -3] [23:87] [6.6:9.5] [34:68] [0.19:0.47] wall target strength
Conspecific target [-49, -43, -33, |-23 -1.5/10dB 0.25/10dB* -0.5/10dB 0.1/10dB Number of bats,
strength (dB) £ -23] [85:91] [7.2:8.15] [48:50] [0.16:0.2] conspecific target

strength

300
301
302
303

Table 1: Key model parameters and their effects on performance metrics. The table presents the key
parameters tested, their ranges, default values, and effect sizes on various performance metrics: exit
probability, time-to-exit, jamming probability, and collision rate with obstacles. The parameters comprised
the number of bats, bat species (PK-Pipistrellus kuhlii, RM —Rhinopoma microphyllum), integration window,
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304 nominal flight speed, call level, echo mis-identification with multi-call clustering (yes/no), masking (yes/no),
305 wall target strength, and conspecific target strength. In each scenario, all parameters except the tested one
306 were set to the default value. Call levels are reported in dB-SPL, referenced at 0.1 m from the source. Effect
307 sizes for each parameter are explicitly listed for all four-performance metrics, expressed as the change per
308 unit of the tested parameter (e.g., per bat or per 10 dB). For flight speed, a non-monotonic relationship was
309 observed, and values are reported both before and after the peak performance (see Results, Fig. 3B).Values
310 in square brackets indicate the minimum and maximum of the metric across the tested range. . Asterisk (*)
311 indicates a significant impact. Each scenario was tested using Generalized Linear Models (GLMs) with
312 number-of-bats and the tested parameters set as fixed explaining variables. Exit probability and jamming
313 probability were treated as binomially distributed, collision rate was treated as a Poisson distributed, and all
314 other variables were considered normally distributed. Explaining variables were set as fixed factors. The
315 number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120, 5 bats: 48; 10 bats: 24; 20
316 bats: 12; 40 bats: 12; 100 bats: 6. © Misidentification rate, multi-call clustering, wall target strength, and
317 conspecific target strength were simulated only up to 40 bats due to significantly longer run-times. ¥ A
318 significant difference in call intensity was found only for a bat density of 100 bats/3m?, and between the
319 group with a level of 100dB-SPL and all other groups. “see Supplementary Figure 3. P see Supplementary
320 Figure 4.

321

322  Discussion

323  We present a model-based approach that suggests how echolocating bats might find their way out
324  of a crowded roost while contending with severe sensory interference caused by numerous nearby
325  conspecifics. Our results demonstrate that a single bat, lacking prior knowledge of the roost’s
326  structure, successfully found the exit in all simulated trials using echolocation alone. As bat density
327  increases, the bats face increased collision risks and more substantial acoustic interference, both
328  of which reduce the probability of efficiently finding the exit. Nevertheless, even at densities of
329 100 bats/3m?2, most bats (63%) successfully exited the roost within a short timeframe. These results
330 are based on a 2D simulation with up to 33 bats/mz2, under the assumption that bats can distinguish
331 their own echoes from those of conspecifics. We demonstrate how a simple sensorimotor approach
332  can solve this supposedly challenging task. This approach encompasses the following principles:
333 (1) emission of echolocation calls; (2) reception of reflected echoes and masking signals; (3)
334  detection of reflectors (including walls and conspecifics) using a gammatone filter bank biological
335  receiver; (4) localization of the detected objects; (5) employment of multi-call integration of
336  acoustic detections; (6) adjustment of flight and echolocation behavior based on the distance and
337 angle to the reflectors; and (7) application of simple pathfinding rules to follow walls and gaps

338  while avoiding collisions. Notably, despite the jamming of a substantial percentage of the echoes
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339 — particularly, with 100 bats, 50% of the echoes from nearby obstacles at ~1 m distance — the

340  bats managed to maneuver correctly even with this simple approach and partial data.

341 A key component of this success was the multi-call integration: increasing the number of stored
342 calls from one to ten markedly improved performance, raising the exit probability from 20% to
343  87% and halving the collision rate. Real bats likely use a much more sophisticated approach that
344  also includes memorizing the roost’s structure®, using landmarks inside the roost®?, reliance on
345  the movement of nearby conspecifics**“°, and exploitation of other sensory modalities. We thus
346  expect their actual performance to surpass that of our modeled bats.

347  Our model suggests that acoustic jamming might be less problematic than has been generally
348  assumed™3 and that movement under severe acoustic masking could be mitigated by increasing
349  the call-rate, creating a redundancy across several calls- similar to how real bats behave in a
350 complex environment®. In our model, the Inter-Pulse Interval (IP1) naturally varied according to
351 established echolocation behavior, decreasing from 100 msec in the search phase to 35 msec (~28
352  calls per second) in the approach phase, and further to 5 msec (200 calls per second) during the
353  final buzz (Table 2). The results indicate that this redundancy, combined with simple sensorimotor
354  heuristics, enhances successful navigation. This is consistent with several recent studies that have

355  pointed in this direction”?4%,

356  While echolocation phases—search, approach, and buzz—are traditionally associated with prey
357  capture, similar patterns have been documented in non-foraging tasks such as landing, obstacle
358  avoidance, clutter navigation, and drinking®*®*. In these contexts, bats modulate call duration and
359 inter-pulse intervals according to object proximity, generating phase-like transitions even without
360 prey. This supports the interpretation of phase structure as a general proximity-sensing strategy
361 rather than a foraging-specific behavior. In our simulations, bats operated predominantly in the
362 approach phase due to the cluttered cave environment—consistent with natural emergence
363  behavior, where navigation dominates over open-space search. Accordingly, our use of

364  echolocation phases in the model is biologically plausible across a range of sensory-guided tasks.

365  The bat densities we simulated, ranging from 1 to 100 bats per 3m?, reflect a wide range reported
366 in field studies. Although bat colonies can be much larger than 100 bats, the maximal simulated
367  density in our model (100 bats per 3 m?) resulted in bats flying in very close proximity, with an

368  average nearest-neighbor distance of 0.27 meters. This density is higher than some of the most-
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369 dense reported bat aggregations, including studies on Miniopterus fuliginosus*, Myotis
370  grisescens®, and Tadarida brasiliensis**%%, where bats emerge from the roost at rates of 15 to

371 500 bats per second, but fly with an average distance of 0.5 meters between individual bats.

372  We compared the performance of two FM echolocating insectivorous bat species: Pipistrellus
373  kuhlii (PK) and Rhinopoma microphyllum (RM). PK bats emit wideband echolocation signals that
374  are less prone to jamming than RM bats’ narrowband signal*>®’, as wideband signals distribute
375  energy across a broader frequency range and are thus more robust against interference®% . Our
376  findings show that PK signals slightly reduce jamming probability (by 9%) and improve wall
377  detection. However, no significant differences in exit probabilities were noted between the two

378  species.

379  Using a simulation allowed us to separate the effects of acoustic interference (masking) and
380 spatial interference (collision avoidance) and revealed new insights into the sensorimotor
381  strategy that could plausibly be used by real bats. The spatial interference reduced the probability
382  of exiting the roost from 100% to 87%, while the acoustic masking further decreased it to 63%.
383  Increasing call intensity had little effect on exit performance, although slightly improving it at high
384  Dat densities. When all bats increased their calling intensity, both desired echoes and masking
385 signals intensified equally, resulting in only a marginal effect. This was tested by varying call
386 intensity levels (100-130 dB SPL) in our simulations (Table 1), demonstrating that beyond a
387  certain level (~110 dB SPL), there is no further benefit in improving obstacle detection. These

388  results align with previous studies that have drawn similar conclusions’,

389 Bats constantly adjust their flight speed to their surroundings®® "2 and specifically when
390 conspecifics are nearby’®. Our study suggests that the optimal velocity for flying through a
391  crowded roost ranges from 6 m/sec to 8 m/sec for densities of 2-100 bats/3m?. Exceeding this
392  velocity-range led to a significant drop in exit probability due to a significant increase in wall
393  collisions. We found that this speed did not depend on bat density in accordance with the
394  observations of Theriault et al.>°. Notably, the reported velocities of RM when exiting a cave? and
395 PK emergence velocity near the cave’ are close to the speed that appears optimal, based on our

396 simulations.

397  We also tested the effects of wall and conspecific target strengths on navigation. Stronger wall

398  echoes substantially improved exit probability and reduced obstacle collisions, despite slightly
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399 increasing masking of conspecific echoes (Supplementary Figure 3). In contrast, changes in
400  conspecific reflectivity had minimal impact, likely because both desired and masking signals
401  scaled similarly (Supplementary Figure 4). This result may also stem from our model’s assumption
402 that bats slow down, but continue flying at the same direction following a collision with a

403  conspecific.

404  Our basic model assumed that bats can distinguish between wall echoes and conspecific echoes,
405  as demonstrated in previous studies ">"7. We suggest that this is a feasible assumption because
406  echoes from cave walls are longer and exhibit distinct spectro-temporal patterns, whereas echoes
407  from smaller objects, such as conspecifics, are shorter*”-"87, However, wall echoes reflected from
408  conspecific calls might resemble those from the bat’s own calls in their amplitude and time-
409  frequency characteristics 2073, This led us to question how the misidentification of such echoes
410 as obstacles might affect navigation. When unable to distinguish between these echoes, the
411  simulated bats responded to all as if they were their own and thus mis-localized conspecific wall
412  echoes. The confusion led to a substantial drop in exit performance, with only 15% of the bats
413  successfully exiting compared to 82% under no-confusion conditions, at a density of 40 bats/3m?,
414 At the same time, the collision rate increased markedly from 0.2 to 0.85 collisions per second.
415  These results demonstrate the vital importance of echo discrimination for successful navigation,
416  highlighting both the necessity of distinguishing between self and conspecific echoes and the
417  classic challenge of detecting desired signals in noisy environments. There is a substantial
418  evidence in the literature supporting the assumption that bats can recognize their own echoes and

419  reliably distinguish them from those of conspecifics®® 757781,

420  Previous studies have also demonstrated that bats can aggregate acoustic information received
421  sequentially over several echolocation calls, effectively constructing an auditory scene in complex
422  environments>®2-%_ Bats are also known to emit call sequences in groups, particularly when
423  spatiotemporal localization demands are high. Studies have recorded sequences of 2-15 grouped
424  calls, supporting the idea that grouping facilitates echo aggregation®®’. Accordingly, we tested
425  how multi-call clustering process—which included grouping nearby reflectors, removing outliers,
426  and estimating wall orientation based on these clusters—could assist bats in pathfinding, even
427  under the assumption of full confusion. At bat densities of 1 to 40 bats/3m? with masking, the
428  multi-call clustering completely restored the collision rate with walls from 0.85 back to 0.2

429  collisions per second, and significantly improved the exit probability, raising it to 58%, although
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430 it did not entirely eliminate the impact of confusion. Our assumption of total confusion between
431  echoes from a bat's own calls and those from conspecifics, as well as our relatively simple
432  clustering model, likely underestimates the true capabilities of real bats when flying in complex

433  environments.

434 Navigation in bats involves processing complex sensory inputs and applying effective decision-
435  making, often requiring an ability to switch strategies®® 4. Bats possess a highly accurate spatial
436  memory829094-9 which is essential for tasks like long-distance migration®!, homing®’, and
437  maneuvering in cluttered environments®. Additionally, they utilize acoustic landmarks to orient
438 in total darkness®, occasionally rely on vision®:%, particularly at the cave edge where light is
439 available, can passively detect echolocating peers, and perhaps eavesdrop on conspecifics’
440  echoes®. In this study we focused on whether echolocation alone is sufficient for one of the most
441  difficult orientation tasks that bats perform — exiting a roost at high densities without prior
442  knowledge of the roost’s shape, aside from the initial flight direction. Thus, our echolocation-only
443  model, which was based on a five-call integration window during most simulations, probably
444 underestimates real bats’ actual performance which also benefits from additional sensory input and
445  can employ addition navigation strategies by sharing information between each other to coordinate

446  and optimize the routes, such as manifested by swarming intelligence33%%,

447  Our model highlights the importance of considering sensory interference in animal behavior
448  research and illuminates the impressive capabilities of echolocating bats. Additionally, the model
449  showcases the value of simulations and establishes a framework for future studies on collective

450  movement and swarming animals, and on robotics in complex environments.

451

452  Methods

453  The simulated bats rely solely on echolocation to detect and locate obstacles and other bats by
454  analyzing the sound waves they receive. They emit directional echolocation calls and receive the
455  echoes reflected by roost walls and conspecifics, as well as the calls of conspecifics and the echoes
456  returning from their calls. The bats adjust their flight trajectory and echolocation behavior based
457  on the estimated location of the detected objects (range and angle), which deteriorates upon
458  acoustic interference. The detection of the received signals is based on the mammalian gammatone

459  filter bank receiver, under the assumption that bats can differentiate between the desired detected
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460  obstacles, conspecifics’ echoes, and masking signals. We conducted 2D simulations with varying
461 number of bats (from 1 to 100) to analyze the flight trajectories with and without masking
462 interference by conspecifics. In the trials without masking interference the bats successfully
463  detected walls and conspecifics without any hindrance. While real-world bat navigation occurs in
464 3D space, the 2D framework represents a worst-case scenario for echolocation-based navigation,
465  asitincreases effective bat density and limits maneuverability compared to a full 3D environment.
466  This approach provides a conservative test of jamming and collision avoidance while maintaining
467  computational tractability, allowing for extensive simulation runs to explore different variables
468  systematically. For a detailed description of the MATLAB simulation see Mazar & Yovel 2020’.

469  The simulation arena was designed to mimic a roost with a corridor-like layout, measuring 14.5
470  meters in length and 2.5 meters in width, featuring a right-angle turn located 5.5 meters before the
471  exit (see Figure 1A for a top-down view). All bats started at a random position withina2 x 1.5 m
472  area at the far end of the cave, each initiating flight within a 0.1-second window in a random
473  direction between -30° and +30° relative to the exit (see Figure 1). They employ a simple
474  navigation algorithm that dynamically adjusts flight direction based on the detected obstacles or
475  conspecifics (Supplementary Figure 1 and Figure 1D). If no obstacles or conspecifics are detected,
476  they continue in a correlated random walk with a maximal turning rate of approximately 30
477  deg/sec. When obstacles are detected, they are first localized with an error (see below and’). Then,
478  if an opening (i.e., a gap of at least 0.5 m between obstacles) is detected, the bats fly through it, if
479  not, they follow the walls while maintaining a 0.8 m distance from them. When approaching an
480  obstacle too closely (<1.5 m and at an angle <60°), they execute an obstacle avoidance maneuver.
481  Close proximity to another bat (<0.4 m) triggers an avoidance maneuver away from the nearest
482  conspecific. To evaluate the choice of these distances (1.5 m from walls and 0.4 m from other
483  bats), we tested the sensitivity of the model to conspecific avoidance distances ranging from 0.2
484  to 1.6 meters across bat densities of 2 to 40 bats/3m2. We observed only a modest effect on exit
485  probability at the highest density, where exit probability increased slightly from 82% to 88% (p =
486  0.024, t = 2.25, DF = 958). No significant changes were observed in exit time, collision rate, or
487  jamming probability across other densities or conditions (GLM, with the number of bats and
488  avoidance distance set as fixed explanatory variables, and the outcome variable being one of: exit
489  probability, time-to-exit, collision rate, or jamming probability). These findings confirm that the

490  modeled behavior is largely insensitive to this parameter range.
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491  If the bat collides with a wall, it immediately turns so that its new flight direction is at a 90° angle
492  to the wall. Collisions between conspecifics, which are common in nature and generally not
493  disruptive in low velocities, are not explicitly modeled. Instead, during the collision event the bat
494  keeps decreasing its velocity and changing its flight direction until the distance between bats is
495  above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the
496  effort required to avoid collisions resulting in forced changes in flight’s direction and speed, rather
497  than from the collision itself. Each decision relies on a multi-call integration window that records
498  the estimated locations of detected reflectors from recent echolocation calls (see Supplementary
499  Figure 2A). By default, this window includes the last five calls, and we systematically tested the
500 effect of using between 1 and 10 calls. This algorithm functions without any prior knowledge of
501 the bats’ location or the roost’s structure. To assess performance, we measured the probability of
502  successfully exiting the roost within a 15-second window. The time-based exit limit was chosen
503 because it is approximately twice the average exit time for 40 bats under acoustic interference in
504  our model, allowing bats sufficient time to correct their trajectory and circle back if they missed
505 the exit on the first attempt. This threshold keeps simulation times reasonable while still capturing
506 the key aspects of exit dynamics.

507  Echolocation behavior and flight speed follow the phases widely reported in insectivorous bats,

508 categorized as "search," "approach," and "buzz"°>1%-1% with specific echolocation parameters for
509  Pipistrellus kuhlii (Kuhl's pipistrelle)”® and Rhinopoma microphyllum (greater mouse-tailed bat).
510 The transition distances between these phases were identical for both species (see Table 2) and are
511  based on empirical studies documenting hunting and obstacle avoidance behavior®-56:69.103-105 |
512  nature, call parameters (Inter Pulse Interval (IPI), call duration, and start and stop frequencies) are
513  primarily shaped by the target distance and echo strength. Accordingly, there is little difference in
514  echolocation between prey capture and obstacles-related maneuvers, aside from intensity
515  adjustments based on target strength 5657:87.106 |n our study, due to the dense cave environment,
516  the bats are found to operate in the approach phase nearly all of the time, which is consistent with
517  natural cave emergence behavior, where they are navigating through a cluttered environment rather
518 thanengaging in open-space search. Our model was designed to remain as simple as possible while
519 relying on conservative assumptions that may underestimate bat performance. If, in reality, bats
520 fine-tune their echolocation calls even earlier or more precisely during navigation than assumed,

521  our model would still conservatively reflect their actual capabilities.
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522  The simulated echolocation call consists of the dominant harmony of the bat’s FM Chirp (1%
523  harmony of the PK and 2" harmony of the RM). The echolocation signals used in our simulation
524 were modeled as logarithmic FM chirps, implemented using the MATLAB built-in function (e.g.,
525  chirp(t, f0, t1, f1, 'logarithmic')). This approach aligns with the known nonlinear frequency
526  modulation characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM). Table
527 2 provides the specific echolocation parameters used in the model, based on Kalko 1995%°, and
528  Goldshtein 2025 %. During the search phase, the bats fly at a nominal velocity of 6 m/sec, reducing
529 it by half during the approach phase and continuously adjusting their speed according to the
530 relative direction of the target, using a delayed linear adaptive law’%*197, The maneuverability of
531 the bats is constrained to a maximum of 4 m/sec?, limiting both angular and linear accelerations.
532  Additionally, our model includes random individual variations in terminal frequencies, assuming

533  anormal distribution with a standard deviation of 1 kHz across the bats.

Pipistrellus kuhlii (Kuhl's pipistrelle)

Flight phase Search | Approach | Buzz

Parameter Start | End | Terminal 1 start | Terminal 1 end | Terminal 2
Inter Pulse Interval [ms] 100 70 35 |18 6 5

Call duration [ms] 7 5 2 2 1 0.3
Terminal frequency [kHz] 39 39 39 |39 39 39

Chirp bandwidth [kHz] 8 35 |30 |30 20 20

Call intensity [dB-SPL] 120 120 |90 |90 80 80
Distance to target [m] >1.2 12 |04 |04 0.2 <0.2

Rhinopoma microphyllum (greater mouse-tailed bat)

Flight phase Search | Approach | Buzz

Parameter Start | End | Terminal 1 start | Terminal 1 end | Terminal 2
Inter Pulse Interval [ms] 100 80 (20 |18 10 9

Call duration [ms] 12 7 2 2 15 0.75
Terminal frequency [kHz] 26 26 26 | 26 26 235

Chirp bandwidth [kHz] 3 4 5 3 3 3

Call intensity [dB-SPL, @0.1m] | 120 120 |90 |90 80 80
Distance to target [m] >1.2 12 |04 |04 0.2 <0.2
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534 Table 2: Echolocation parameters. The table presents the echolocation parameters of the two bat species
535 we simulated during the specified flight phases (i.e., search, approach, buzz, and final buzz). In each phase,
536 except for the search phase, in which the parameters remain constant, the parameters for each call are
537 determined by the distance to the closest detected object.

538  The sound intensity of the echoes generated by the bat’s own calls and those of its conspecifics
539 are calculated using the sonar equation’% (pp. 196-198), as shown in Equation 1, geometrical
540 relations are according to Supplementary Figure 5. The received levels of the masking calls are

541  determined by using the Friis transmission equation®®®

, as shown in Equation 2. All signal levels
542  were simulated and reported in dB-SPL, referenced to 0.1 meters from the emitting bat. Bats are
543  modeled acoustically as spherical reflectors with a fixed target strength of -23dB assuming
544  reference distance 1 meter, reflecting sound isotropically. This approximates a sphere with a radius
545  of 0.15 m, corresponding to the approximate wingspan of Rhinopoma microphyllum (RM) 25110,
546  While target strength can vary with wing posture and body geometry, we chose a representative
547  value within the reported biological range for simplicity and model consistency. Our own
548  measurement of a 3D-printed RM bat yielded a target strength of —32 dB, and a sensitivity analysis
549  (Supplementary Figure 4) showed that model performance was only mildly affected across a wide
550 range of target strengths (see Supplementary Figure 4). This supports the robustness of our
551  approach to different sized bats. Walls are modeled as composites of individual reflectors placed
552 20 cm apart; each treated as a sphere with a 20 cm radius and a target strength of -22.5dB. For
553  simplicity, in our model, the head is aligned with the body, therefore the direction of the
554  echolocation beam is the same as the direction of the flight. The directivity of the calls and the
555  received echoes is defined by the piston model”*%? with radii of 3 mm for the mouth-gap and 7
556 mm for the ear. The directivity is not directly influenced by velocity but follows behavioral
557  dependent frequency changes. As the bat transitions from search to approach to buzz phases, it
558  emits higher-frequency calls, leading to increased directivity. This shift coincides with a natural
559  reduction in speed during the approach phase. Echo delays are calculated as the two-way travel
560 time of the signals from the emitter to the target.

Equation 1: Pr _ Pt . Gt(¢taryetv(];);f;gﬁtargetf)/lz i 10—2autt(f)/10'(D_0'1) . G'(f)

2
EQUation 2: Prask = PGu(Beyr )61 (@rye,s ) (57 —) 1070w ®=0D

ATD txrx
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Ge(Pepf ) Gr(ryf)2?

—agr(Dey+Dy,—02) |
am?D,. 2D, 2 10 %a x D1y a(f)

Equation 3: PechoesFromMasking =P,

where,

P.: level of the received signal [SPL]

P, : level of the transmitted call [SPL]

Pqsk - level of the masking signal as received by the bat [SPL]

Pechoesrrommasking - 1€VEl Of the echoes reflected by conspecifics and received by the bat [SPL]

Gt(¢, f): gain of the transmitter (mouth of the bat, piston model), as a function of azimuth and

frequency (f) [numeric]

G,-(¢, f): gain of the receiver (ears of the bat, piston model) [numeric]
®rarget - the angle between the bat and the reflected object [rad]

D: distance between the bat and the target [m]

®t,r, D, r, - the angle [rad], and the distance [m] between the transmitting conspecific and the

receiving focal bat (from the transmitter’s perspective)

®r.t,» Dr. ¢, - the angle [rad], and the distance [m] between the receiving bat and the transmitting

bat (from the receiver’s perspective)

¢, : the angle [rad], between the masking bat and target (from the transmitter’s perspective)

aq¢+ (f): atmospheric absorption coefficient for sound [dB/m]
a(f): SONAR cross-section of the target [m?]
A: The wavelength of the signal [m]

561 To maintain model simplicity, we did not incorporate Doppler effects in the echolocation model.
562  While Doppler shifts can affect frequency perception, their impact on jamming and navigation
563  performance is minimal in this context!!t, Moreover, the inter-individual random signals
564  frequencies were larger than the expected Dopplers. In addition, the model does not assign echoes
565  to earlier calls if their delays exceed the bat’s own Inter-Pulse Interval (IP1), and thus does not

566  simulate pulse-echo ambiguity.
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567 To model the detection process in the bat's cochlea, we employed a monoaural filter bank
568  receiver*” 12113 consisting of 80 channels, each with three components: (i) a gammatone filter of
569  order 8, acting as a bandpass filter with center frequencies logarithmically scaled between 10kHz
570  and 80kHz’; (ii) a half-wave rectifier; and (iii) a lowpass filter (Butterworth, fc=8kHz, order=6).
571  Object detection and distance estimation are conducted using Saillant’s method”*"*4, based on
572  the sum of detections in the active channels, see Figure 1C, D. Initially, a de-chirping process
573  calculates the reference frequency-delay by detecting the peak in the response of each channel to
574  the emitted call in a noise-free environment. Subsequently, the received signal, containing both
575  desired echoes and masking sounds, passes through the filter bank. In each channel, all peaks
576  above a threshold level are detected and time-shifted by the de-chirp reference. The detection
577  threshold in each channel was set to the higher of two values: either 7 dB above the noise floor (0
578  dB-SPL) or the maximum received signal level minus 70 dB, thereby enforcing a dynamic range
579  of 70dB. Peaks from all channels are aggregated in 5 ps windows and convolved with a Gaussian
580  kernel with 0=5 us. Output peaks that exceed the threshold level, set at 10% of the number of
581 active channels, and fall within a time window of 100us around the expected delay, are considered
582  successful detections.

583  To evaluate the impact of acoustic interference, we conducted the detection procedure twice. The
584  first, termed “interference-free detection”, comprised only the desired echoes, with white Gaussian
585 noise at a level of 0 dB-SPL and without masking signals. The second, termed “full detection”
586  comprised the desired echoes, Gaussian noise, and the masking signals. Detected echoes in the full
587  detection were defined by the strongest peak within a four-millisecond window (three milliseconds
588  before and one millisecond after, accounting for forward and backward masking 2415-117) detected
589  above the threshold within 100us of the interference-free detections. If the detected peak in the
590  full detection condition was delayed by more than 100 us compared to the interference-free case,
591 it was defined as a miss-detection. Peaks with smaller timing shifts were considered detection
592  with timing errors. Jammed echoes were defined as echoes that were detected under the
593 interference-free condition but not detected under the full detection condition. The jamming
594  probability was calculated as the ratio of jammed echoes in the full detection condition to the

595 detected echoes in the interference-free condition.

596  After detection, the bat estimates the range and the Direction of Arrival (DOA) of the reflecting
597  objects. The range is determined by the delay of the detected echo, including any errors derived
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598 from the filter-bank process in the “full detection” process (i.e., including all masking
599  signals).”*%13, The direction is not explicitly estimated through binaural processing. Instead,
600  based on previous studies 1118 we assumed that bats can estimate the direction of arrival with an
601 angular error that depends on the Signal-to-Noise Ratio (SNR) and the angle. The inputs to this
602  process include the peak level of the desired echo, the noise level, and the level of acoustic
603 interference. The output is the estimated direction of arrival with a random error applied based on
604  the SNR. At an angle of 0° and an SNR of 10 dB, the standard deviation of the error is 1.5° *° and
605 7 (Equation 4), with the error capped at a maximum of 3° in our model.

606 Equation 4:  DOAgrror = J(kZ/SNR)2+(k3 + ky - sin(¢))?

607  where, ko, ks, and ks are constants chosen to produce a DOA error consistent with the range

608  described above.
609

610  To evaluate the impact of the assumption that bats can distinguish between echoes caused by their
611 own calls and those caused by other bats (i.e., conspecifics' reflectors), we tested an alternative
612  model in which the simulated bats treat all echoes reflected from walls as if they have originated
613  from their own calls The distance to reflectors of conspecifics' calls is estimated based on the time
614  difference between the echo and the bat’s last call. The direction of arrival is estimated by the
615 angle between the bat and the physical reflector, with an added random error (the same process

616  used for their own echoes).

617 In real bats, spatial processing in the brain involves integrating auditory and spatial information
618  over time to construct a coherent map of the environment >, This neural computation is crucial
619 for navigation and prey detection in complex environments. To examine whether spatial
620 integration mitigates the confusion problem, we added a ‘multi-call clustering” module that was
621  based on the sensory information obtained within a one-second memory window. The clustering
622  comprised the following steps: (i) clustering all detections in memory into groups with a maximum
623 internal distance of 10 cm; (ii) reconstructing the estimated walls positions and directions based
624  on the average of clusters that include at least two detections (rather than relying on single
625 reflections); and (iii) identifying openings between reconstructed wall edges ranging from 0.5 to
626  2.25 meters in width, see Supplementary Figure 1 and Supplementary Figure 2B. The model
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627  assumes that bats store echo locations in an allocentric x-y coordinate system, transforming
628  detections from a local to a global spatial framework. Collision avoidance is based not only on the
629 integrated spatial representation but also on immediate echoes from the last call (prior to
630 clustering), including potential uncorrected false detections and localization errors, which are

631 independently processed for real-time evasive maneuvers.

632  Statistical analysis

633  Statistical analysis and the roost-exit model were conducted using MATLAB® 2023a.

634  Tests were performed with a significance level of 0.05. For each simulated scenario, we examined
635 the effect of the various parameters on exit probability, time-to-exit, collision rate, and the
636  jamming probability, using Generalized Linear Models (GLMs). The GLM tests were executed
637  with MATLAB built-in function “fitgm()’. Probability variables (such as exit and jamming
638  probabilities) were treated as binomially distributed; rate variables (such as collision rate) were
639 treated as Poisson distributed, and all other variables were considered normally distributed. Unless
640 otherwise stated, all explaining variables were set as fixed factors. All statistical analyses,
641 including the statistical test and the corresponding sample sizes, are described throughout the text
642 and summarized in Table 1. Standard errors are calculated across all individuals within each

643  scenario, without distinguishing between different simulation trials.

644  Data availability
645  All data and codes generated during this study are included in the manuscript and supporting files.
646  Source code files have been uploaded with a Graphical User Interface and a readme file for

647  explanation. Data are available at zenodo and github:

648  https://zenodo.org/records/16992617 (link)

649  https://github.com/omermazar/Colony-Exit-Bat-Simulation/tree/main (link)
650

651

652

653
654
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656  Supplementary
657  Supplementary Movie 1
658  link

659

660  Supplementary Figure 1: Decision-making in echolocation-based pathfinding
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662  This diagram illustrates the sensorimotor decision-making process based solely on echolocation.
663  The process starts with the emission of an echolocation call (1) and the reception of echoes and
664 interfering signals (2), followed by sensory processing for detection, range estimation, and
665 direction of arrival (DOA) (3). After integrating detections over a 1-10 call window (4), the bat
666  engages in crash avoidance (5) by evaluating the proximity of conspecifics and obstacles directly
667 ahead. If either is too close, the bat turns in the opposite direction of the detected obstacle, by
668  applying maximum angular velocity away from it (e.g., if the obstacle is on the right, the bat turns
669 left). If no immediate threat is detected, the bat proceeds to pathfinding (6). During pathfinding,
670 it checks for obstacles and, if an opening is detected, flies toward the gap's center. Without the
671  optional multi-call clustering process (green), the bat simply integrates detections and flies
672  toward the farthest detected obstacle, interpreting it as a wall edge. If the multi-call clustering is
673 included (9), a one-second short memory aids in clustering detections, estimating wall edges, and
674 identifying openings, while also allowing the bat to follow walls at a constant distance.
675  Throughout, the bat continuously adjusts echolocation parameters (8) and controls flight direction

676  and velocity (7) based on ongoing sensory information and decision-making.

677
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Supplementary Figure 2A: Multi-Call Integration
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This figure demonstrates the effect of multi-call integration under non-confusing conditions. The

upper-right panel shows the position of the focal bat (black) and nine conspecifics (red) within the

roost corridor, with a zoomed-in view of the gray rectangle provided in Panels A-C.

(A) When the integration window is set to zero calls (no memory), the bat relies solely on the latest

call. Green circles and squares represent detected reflectors, while red Xs indicate missed

(jammed) detections. Notably, the left wall of the corridor remains undetected due to jamming.

(B, C) Increasing the integration window to five calls (magenta squares) and ten calls (black

squares) accumulates detections from prior calls, improving coverage of the environment. In this

basic integration model,

29

each detection

is treated

independently, without clustering.
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(D1, D2) Magnified views of the grey regions indicated in Panel C, comparing detections across
0, 5, and 10-call windows (green, magenta, and black, respectively), illustrating how extended
memory improves detection robustness. Note that the X-Y aspect ratios in D1 and D2 differ from

the main panels to enhance visibility of spatial distributions.

Supplementary Figure 2B: Multi-Call Clustering Example
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696  This figure illustrates the multi-call clustering algorithm under full-confusion conditions. (A) A
697  focal bat (black) and four conspecifics (red) are shown in the lower corridor. (B) A zoom-in of the
698  gray rectangle in (A). Black ovals represent detections from the last call; red X’s indicate jammed
699 echoes; black squares represent all detections stored across the integration window (before
700 clustering), each subject to localization error. When not applying multi-call clustering — the bat
701 would rely on all of these dots as reflectors. Under full confusion, the bat cannot distinguish self-
702  echoes from conspecific echoes, leading to false detections (red diamonds). Detections are
703  clustered when a reflector is detected twice or more within a 10 cm radius (green squares). The
704  clustered reflectors are used to estimate wall directions (blue dashed line) and detect possible gaps
705  (notshown). As a result of to the multi-call clustering algorithm, most false detections are removed
706 as outliers, except for one erroneous cluster (Panel A). Collision avoidance maneuvers are based
707  on both the clustered obstacles and the raw detections from the latest call (empty black ovals).

708
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709  Supplementary Figure 3: Sensitivity of exit performance to obstacle target strength
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711

712  This figure shows how changes in the acoustic target strength of the cave walls affect navigation
713  performance across five bat densities (1, 5, 10, 40, and 100 bats/3 m?). Target strength values
714 ranged from —33 dB to —3 dB, corresponding to spherical reflectors with approximate radii from
715  0.05m to 1.5 m. Overall, increasing obstacle target strength significantly influenced exit

716  performance, primarily by reducing the probability of obstacle jamming and thereby improving
717  detection. (A) Exit Probability increased with obstacle target strength across all densities, with a
718  maximal increase of 64% for a density of 100 bats (p << 107'°, t = 28.5, DF = 8157, GLM). (B)
719  Time to Exit decreased significantlywith increasing obstacle target strength, with a maximal

720  reduction of approximately 2.8 seconds at a density of 10 bats (p << 107'°, t =-22.2, DF = 6920,
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721  GLM). (C) Conspecific Collision Rate increased slightly with stronger obstacle echoes (p <<
722 107, t=27.6, DF = 8157, GLM). (D) Obstacle Collision Rate decreased significantly with
723  increasing target strength (p << 107'°, t=-10.7, DF = 8157, GLM), reflecting better detection of
724 walls and structures. (E) Obstacle Jamming Probability decreased consistently (p << 1071, t=
725 -19.8, DF = 8157, GLM). (F) Conspecific Jamming Probability increased with obstacle target
726  strength (p << 1071, t = 27.6, DF = 8157, GLM).

727  These results suggest that stronger wall echoes improve environmental awareness at the cost of
728  slightly increased masking of conspecific echoes. Despite this, the overall performance—

729  particularly exit probability and reduced obstacle collisions—improves significantly.

730 Inall panels, circles represent means and bars represent standard errors. The error bars are
731  present but very small due to the large number of simulation repetitions, and thus may not be
732 visually noticeable at the plotted scale. See Table 1 for the number of simulated bats.

733

734
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Supplementary Figure 4: Sensitivity of exit performance to conspecific’s target strength
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This figure shows how changes in the acoustic target strength of conspecifics affect navigation

performance across four bat densities (1, 5, 10, and 40 bats/3 m?). Overall, our results indicate that

target strength has a relatively minor impact on performance, likely because it affects both desired

echo signals and masking signals equally. Interestingly, this analysis also suggests that our model

is more sensitive to the bat’s response to nearby conspecifics than to the physical collision impact

itself. (A) Exit probability was not significantly affected by conspecific target strength (p=0.28,
t=-1.09, DF=5757, GLM, see details in Table 1). Note that the performance curves for densities of

1 and 5 bats overlap almost completely. (B) Time-to-exit increased with target strength at high
density, with a maximal effect size of ~1 second at 40 bats (p = 0.003, t = 3.02, DF = 5578). (C,

D) Collision rates with conspecifics decreased significantly with stronger target strength (p =
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0.0002, t = -3.7, DF = 5757), while collisions with obstacles remained statistically unchanged (p
=0.23,t=1.18, DF = 5757). (E, F) Jamming probability was not significantly affected for either
conspecific or obstacle echoes (p = 0.6, t = —0.51, DF = 4762; p = 0.19, t = 1.31, DF = 5757,
respectively). This aligns with the notion that both useful and interfering signals scale similarly
with target strength. Importantly, the probability of detecting a conspecific located within 1 meter
increased substantially with higher target strength, improving from 25% to 43% at 40 bats (p <
107'°, t = 6.45, DF =4162).

In all panels, circles represent means and bars represent standard errors. The error bars are present
but very small due to the large number of simulation repetitions, and thus may not be visually

noticeable at the plotted scale. See Table 1 for the number of simulated bats.

Supplementary Figure 5: Angles and distances for two bats and two reflecting objects.

Prey#2

Batl receives a reflected echo from Prey1 or a stationary obstacle located at a distance of D from

it, with an angle rarger relative to its flight direction (red arrow 1). Preyl is also within the
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764  detection range of Batl, depicted by the green shaded piston area. Batl also receives masking
765  sounds from Bat2. The echolocation signals emitted by Bat2 arrive at the ear of Batl at an angle
766 ¢, relative to its flight direction and from a distance of D, . (red arrow 2). Additionally, the
767  echolocation signals of Bat2 are reflected by Prey2, before being received by Bat 1. These reflected
768  signals act as masking signals at a relative angle of angle ¢, , and from a distance of D from

769  Batl.
770
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